scholarly journals RANDOM AND SYSTEMATIC LAND-COVER TRANSITIONS IN NORTH-EASTERN WOLLEGA, ETHIOPIA

2017 ◽  
Vol 332 ◽  
pp. 3-15 ◽  
Author(s):  
Alemayehu Adugna ◽  
Assefa Abegaz ◽  
Asmamaw Legass ◽  
Diogenes L. Antille

Africa has seen significant changes in land cover at different spatial scales. Changes in Land Use and Land Cover (LULC) include deforestation and subse- quent use of the land for arable cropping, conversion to grassland or urbanization. The work reported in this article was conducted to examine land cover transi- tions in north-eastern Wollega (Ethiopia) between 2005 and 2015. The analysis focused on land cover transitions that occurred systematically or randomly, and identified the main drivers for these changes. Landsat data from 2005 and 2015 were examined to better unders- tand the various dimensions of land cover transitions, namely: swaps, losses, gains, persistency and vulnerability. Results showed that shrubland exhibited the largest gain (22%), with a 63% gain- to-loss ratio, a 47% gain-to-persistence ratio and a positive net change-to-persis- tence ratio of 46%. Cropland showed the largest loss (19%) while grassland was the most stable type of land cover des- pite some fluctuation (»10%) observed during the 10-year period. The land cover transition was dominated by systematic processes, with few random processes of change. Systematic land cover transitions such as agricultural abandonment and vegetation re-growth were attributed to regular or common processes of change. This study suggests that the implementa- tion of practices conducive to sustainable intensification of existing agricultural land, supported by policies that promote increased diversification of Ethiopian agriculture, would mitigate pressure on forests by avoiding their future conver- sion to cropland.

<em>Abstract.</em>—We analyzed data from 38 sites on 31 large rivers in Wisconsin to characterize the influence of environmental variables at the basin, reach, and site scales on fish assemblages. Electrofishing and site habitat data were collected for a distance of 1.6 km per site. Environmental variables included conductivity, substrate, and fish cover at the site scale; distance to impoundments, dams, and length of riverine habitat at the reach scale; and land cover, climate, and geology at the basin scale. Of the 77 fish species found, 39 occurred in more than 10% of the sites and were retained for analyses of fish abundance and biomass. Redundancy analysis (RDA) was used to relate species abundance, biomass, and 16 assemblage metrics to environmental variables at the three spatial scales. The site and basin scales defined fishes along a gradient from high conductivity, fine substrate, and agricultural land cover to low conductivity, rocky substrate, and forested land cover. For abundance and biomass, the strongest assemblage pattern contrasted northern hog sucker <em>Hypentelium nigricans</em>, blackside darter <em>Percina maculata</em>, and logperch <em>P. caprodes </em>with common carp <em>Cyprinus carpio</em>, channel catfish <em>Ictalurus punctatus</em>, and sauger <em>Sander canadensis</em>. The <em>H. nigricans </em>group, along with high values of index of biotic integrity and some assemblage metrics (percent lithophilic spawners, percent round-bodied suckers), corresponded with the forested end of the ecological gradient, whereas the <em>C. carpio </em>group and percent anomalies corresponded with the agricultural end. Natural environmental conditions, including bedrock geology type, bedrock depth, surficial geology texture, basin area, and precipitation, also influenced the fish assemblage. Partial RDA procedures partitioned the explained variation among spatial scales and their interactions. We found that widespread land cover alterations at the basin scale were most strongly related to fish assemblages across our study area. Understanding the influence of environmental variables among multiple spatial scales on fish assemblages can improve our ability to assess the ecological condition of large river systems and subsequently target the appropriate scale for management or restoration efforts.


2009 ◽  
Author(s):  
B. Erdenee ◽  
Gegen Tana ◽  
Ryutaro Tateishi

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


EcoHealth ◽  
2021 ◽  
Author(s):  
Felipe A. Hernández ◽  
Amanda N. Carr ◽  
Michael P. Milleson ◽  
Hunter R. Merrill ◽  
Michael L. Avery ◽  
...  

AbstractWe investigated the landscape epidemiology of a globally distributed mammal, the wild pig (Sus scrofa), in Florida (U.S.), where it is considered an invasive species and reservoir to pathogens that impact the health of people, domestic animals, and wildlife. Specifically, we tested the hypothesis that two commonly cited factors in disease transmission, connectivity among populations and abundant resources, would increase the likelihood of exposure to both pseudorabies virus (PrV) and Brucella spp. (bacterial agent of brucellosis) in wild pigs across the Kissimmee Valley of Florida. Using DNA from 348 wild pigs and sera from 320 individuals at 24 sites, we employed population genetic techniques to infer individual dispersal, and an Akaike information criterion framework to compare candidate logistic regression models that incorporated both dispersal and land cover composition. Our findings suggested that recent dispersal conferred higher odds of exposure to PrV, but not Brucella spp., among wild pigs throughout the Kissimmee Valley region. Odds of exposure also increased in association with agriculture and open canopy pine, prairie, and scrub habitats, likely because of highly localized resources within those land cover types. Because the effect of open canopy on PrV exposure reversed when agricultural cover was available, we suggest that small-scale resource distribution may be more important than overall resource abundance. Our results underscore the importance of studying and managing disease dynamics through multiple processes and spatial scales, particularly for non-native pathogens that threaten wildlife conservation, economy, and public health.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 353
Author(s):  
Rassim Khelifa ◽  
Hayat Mahdjoub ◽  
Affef Baaloudj ◽  
Robert A. Cannings ◽  
Michael J. Samways

Agriculture can be pervasive in its effect on wild nature, affecting various types of natural habitats, including lotic ecosystems. Here, we assess the extent of agricultural expansion on lotic systems in Northern Africa (Algeria, Tunisia, and Morocco) and document its overlap with the distribution of an endemic damselfly, Platycnemis subdilatata Selys, using species distribution modeling. We found that agricultural land cover increased by 321% in the region between 1992 and 2005, and, in particular, the main watercourses experienced an increase in agricultural land cover from 21.4% in 1992 to 78.1% in 2005, together with an increase in the intensity of 226% in agricultural practices. We used capture–mark–recapture (CMR) surveys in terrestrial habitats surrounding a stream bordered by grassland and cropland in northeastern Algeria to determine demographic parameters and population size, as well as cropland occupancy. CMR modeling showed that the recapture and survival probabilities had an average of 0.14 (95%CI: 0.14–0.17) and 0.86 (0.85–0.87), respectively. We estimated a relatively large population of P. subdilatata (~1750 individuals) in terrestrial habitats. The occupancy of terrestrial habitats by adults was spatially structured by age. Our data suggest that P. subdilatata has survived agricultural expansion and intensification better than other local odonate species, mainly because it can occupy transformed landscapes, such as croplands and grasslands.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1541
Author(s):  
Albert Nkwasa ◽  
Celray James Chawanda ◽  
Anna Msigwa ◽  
Hans C. Komakech ◽  
Boud Verbeiren ◽  
...  

In SWAT and SWAT+ models, the variations in hydrological processes are represented by Hydrological Response Units (HRUs). In the default models, agricultural land cover is represented by a single growing cycle. However, agricultural land use, especially in African cultivated catchments, typically consists of several cropping seasons, following dry and wet seasonal patterns, and are hence incorrectly represented in SWAT and SWAT+ default models. In this paper, we propose a procedure to incorporate agricultural seasonal land-use dynamics by (1) mapping land-use trajectories instead of static land-cover maps and (2) linking these trajectories to agricultural management settings. This approach was tested in SWAT and SWAT+ models of Usa catchment in Tanzania that is intensively cultivated by implementing dominant dynamic trajectories. Our results were evaluated with remote-sensing observations for Leaf Area Index (LAI), which showed that a single growing cycle did not well represent vegetation dynamics. A better agreement was obtained after implementing seasonal land-use dynamics for cultivated HRUs. It was concluded that the representation of seasonal land-use dynamics through trajectory implementation can lead to improved temporal patterns of LAI in default models. The SWAT+ model had higher flexibility in representing agricultural practices, using decision tables, and by being able to represent mixed cropping cultivations.


2019 ◽  
Vol 34 (8) ◽  
pp. 1889-1903
Author(s):  
Julia E. Put ◽  
Lenore Fahrig ◽  
Greg W. Mitchell
Keyword(s):  

2020 ◽  
Vol 12 (2) ◽  
pp. 699 ◽  
Author(s):  
Joy R. Petway ◽  
Yu-Pin Lin ◽  
Rainer F. Wunderlich

Though agricultural landscape biodiversity and ecosystem service (ES) conservation is crucial to sustainability, agricultural land is often underrepresented in ES studies, while cultural ES associated with agricultural land is often limited to aesthetic and tourism recreation value only. This study mapped 7 nonmaterial-intangible cultural ES (NICE) valuations of 34 rural farmers in western Taiwan using the Social Values for Ecosystem Services (SolVES) methodology, to show the effect of farming practices on NICE valuations. However, rather than a direct causal relationship between the environmental characteristics that underpin ES, and respondents’ ES valuations, we found that environmental data is not explanatory enough for causality within a socio-ecological production landscape where one type of land cover type (a micro mosaic of agricultural land cover) predominates. To compensate, we used a place-based approach with Google Maps data to create context-specific data to inform our assessment of NICE valuations. Based on 338 mapped points of 7 NICE valuations distributed among 6 areas within the landscape, we compared 2 groups of farmers and found that farmers’ valuations about their landscape were better understood when accounting for both the landscape’s cultural places and environmental characteristics, rather than environmental characteristics alone. Further, farmers’ experience and knowledge influenced their NICE valuations such that farm areas were found to be sources of multiple NICE benefits demonstrating that farming practices may influence ES valuation in general.


2018 ◽  
Vol 28 (10) ◽  
pp. 1519-1537 ◽  
Author(s):  
Basanta Paudel ◽  
Yili Zhang ◽  
Shicheng Li ◽  
Linshan Liu

Sign in / Sign up

Export Citation Format

Share Document