scholarly journals PLANNING OF FLOATING FOUNDATION FOR SOFT SOIL IN GLAGAH AGUNG, BANYUWANGI CITY

2019 ◽  
Vol 3 (2) ◽  
pp. 154
Author(s):  
Dora Melati Nurita Sandi ◽  
Erna Suryani ◽  
Ayu Wanda Febrian

Soft soil in construction often creates a problem. Soft soil which has the characteristics of low bearing capacity and high shrinkage properties becomes a problem for construction. One of the efforts to overcome these problems is by planning building foundations that are following soft soil characters. A floating foundation is planned that adopts the concept of lightweight concrete. The lightweight concrete used is an innovative concrete that uses styrofoam as a substitute for coarse aggregate. So that this concrete does not require broken stone or gravel as a concrete filler. Initial planning for floating foundations was carried out in the Purwoharjo area. Soil samples are taken and analyzed their characteristics to get the soil parameters. Then the dimensions of the foundation are planned by using the terzaghi formula for shallow foundations. The decrease or settlement of the soil was analyzed using the help of PLAXIS 2D software. Tanah lunak dalam konstruksi seringkali menjadi sebuah kendala. Tanah lunak yang memiliki karakteristik daya dukung rendah dan sifat kembang susut tinggi menjadi sebuah permasalahan dalam mendirikan bangunan di atasnya. Salah satu upaya untuk mengatasi permasalahan tersebut adalah dengan merencanakan pondasi bangunan yang sesuai dengan karakter tanah lunak. Direncanakan sebuah pondasi apung yang mengadopsi konsep beton ringan. Beton ringan yang digunakan merupakan beton inovasi yang menggunakan styrofoam sebagai pengganti agregat kasarnya. Sehingga beton ini tidak memerlukan batu pecah atau kerikil sebagai bahan pengisi beton. Perencanaan awal untuk pondasi apung, dilakukan di daerah Purwoharjo. Sample tanah diambil dan dianalisis karakteristiknya untuk mendapatkan parameter-parameter tanahnya. Kemudian direncanakan dimensi pondasi dengan menggunakan rumus terzaghi untuk pondasi dangkal. Penurunan atau settlement tanah dianalisis menggunakan bantuan software PLAXIS 2D.

2020 ◽  
Vol 22 (2) ◽  
pp. 149-155
Author(s):  
Iskandar ◽  
Rabiya

Soil consolidation testing using an oedometer and rowe cell. Oedometers are often used on clay and soft soils. However, in the development of the rowe cell device, the results of lowering soft soil were better than the oedometer. The advantage of this rowe cell is that it can determine the saturation value of the soil samples tested. The rowe cell tester can measure the pore water pressure at the beginning and end of each consolidation stage. This rowe cell can provide suitable settlement for soft soils. This consolidation test to obtain soil parameters such as Cv and Cc by using the rowe cell tool. After that, from the test results, the two tools were compared.


2011 ◽  
Vol 48 (3) ◽  
pp. 425-438 ◽  
Author(s):  
Won Taek Oh ◽  
Sai K. Vanapalli

The bearing capacity and settlement of foundations are determined experimentally or modelled numerically based on conventional soil mechanics for saturated soils. In both methods, bearing capacity and settlement are estimated based on the applied vertical stress versus surface settlement relationship. These methods are also conventionally used for soils that are in an unsaturated condition, ignoring the contribution of matric suction. In this study, a methodology is proposed to estimate the bearing capacity and settlement of shallow foundations in unsaturated sands by predicting the applied vertical stress versus surface settlement relationship. The proposed method requires soil parameters obtained under only saturated conditions (i.e., effective cohesion, effective internal friction angle, and modulus of subgrade reaction from model footing test) along with the soil-water characteristic curve (SWCC). In addition, finite element analyses are undertaken to simulate the applied vertical stress versus surface settlement relationship for unsaturated sands. The proposed method and finite element analyses are performed using an elastic – perfectly plastic model. The predicted bearing capacities and settlements from the proposed method and finite element analyses are compared with published model footing test results. There is good agreement between measured and predicted results.


2014 ◽  
Vol 695 ◽  
pp. 729-733 ◽  
Author(s):  
Ahmad Hakimi Mat Nor ◽  
Aklil Hamdee Yahuda ◽  
Faizal Pakir

Road settlement often occurs because that soil cannot accommodate the load capacity. Therefore, the study to analysis of lightweight concrete “cakar ayam” foundation was conducted. The idea of “cakar Ayam” concept was introduced by Prof. Dr. Ir. Sediyatmo. Objective of these studies was achieved which is to determine the settlement value of lightweight concrete “Cakar Ayam” foundation design on soft clay, sand, clayey silt under the different loads. Hence, the effectiveness of lightweight concrete “cakar ayam” foundation on that soil, have been able to determined according the settlement value was obtained. Implementation of research was doing using Plaxis 3D foundation software. The foundation design was various according to the several of the column length. The slab thickness, spacing between column, foundation and column size was fixed. Soil parameters to analyse lightweight concrete “cakar ayam” foundation, was obtained from previous studies and Research Center of Soft Soil, Universiti Tun Hussien Onn Malaysia, (RECESS, UTHM). Each design was tested by different loads to get the settlement value. From the results show, the settlements value was obtained show concept of “cakar ayam” foundation, not effective to be implement on soft clay. The settlement value was over 25 mm, when the load 20 kN/m2 was applied on the foundation, to all length of column on soft clay. However, the settlement value was lower than 25 mm, when the load 40 kN/m2 was applied on the foundation, to all length of column on sand and clayey silt. From all the settlement value, it could be seen that clayey silt result was more effective than sand. The settlement value also was decrease when the length of pile was increase. In conclusion, the objective of the study was achieved.


2020 ◽  
Vol 17 (1) ◽  
pp. 12-22
Author(s):  
Jose Alejandro Duque Felfle ◽  
◽  
Carlos José Lascarro Estrada ◽  
Melany Gil Rueda ◽  
Oscar Fernando García Guardo ◽  
...  

Abstract. For pavement constructions such as runway and highway construction, fine-grained soils are not suitable because of their undesirable properties such as grading of particle size, low bearing capacity, and more plasticity, and its ability to swell. To improve these soil properties various soil stabilization methods are needed. The stabilization is done by adding various stabilizing materials with the fine-grained soil. Fibres are one of the materials used in soil stabilization. This experimental study has been carried over to improve the bearing capacity of soft soil (from Sholinganallur, Chennai) by using Natural and Artificial fibres. During this study, the soil samples which has been stabilized with various fibres was prepared i.e., soil with Natural fibres (jute fibre) and soil with artificial fibres. In this experimental study, index properties and engineering properties of soft soil or unreinforced samples and stabilized soil samples with fibres are determined. Samples are subjected to various soil tests which have been used to determine the engineering properties of soil. The soil tests such as the standard proctor compaction test, unsoaked California Bearing Ratio (CBR) test, and Unconfined Compression (UCC) test had been done to determine the characteristics of the samples. To determine the properties of the reinforced materials, the fibres also have undergone various geosynthetic laboratory tests. The results of the study show that the bearing capacity of Shollinganallur fine-grained soil can be improved subsequently and water absorption by soil has been reduced significantly by using fibres.


Author(s):  
Ana Alencar ◽  
Rubén Galindo ◽  
Svetlana Melentijevic

AbstractThe presence of the groundwater level (GWL) at the rock mass may significantly affect the mechanical behavior, and consequently the bearing capacity. The water particularly modifies two aspects that influence the bearing capacity: the submerged unit weight and the overall geotechnical quality of the rock mass, because water circulation tends to clean and open the joints. This paper is a study of the influence groundwater level has on the ultimate bearing capacity of shallow foundations on the rock mass. The calculations were developed using the finite difference method. The numerical results included three possible locations of groundwater level: at the foundation level, at a depth equal to a quarter of the footing width from the foundation level, and inexistent location. The analysis was based on a sensitivity study with four parameters: foundation width, rock mass type (mi), uniaxial compressive strength, and geological strength index. Included in the analysis was the influence of the self-weight of the material on the bearing capacity and the critical depth where the GWL no longer affected the bearing capacity. Finally, a simple approximation of the solution estimated in this study is suggested for practical purposes.


Sign in / Sign up

Export Citation Format

Share Document