scholarly journals Indexes of performance of combustion engines in hybrid vehicles during the UDC test

2015 ◽  
Vol 160 (1) ◽  
pp. 11-25
Author(s):  
Wojciech CIEŚLIK ◽  
Ireneusz PIELECHA ◽  
Andrzej SZAŁEK

An increased interest in hybrid drive systems allowing reduction of fuel consumption and emissions of harmful substances into the atmosphere, as well as their partial use as zero–emission vehicles promotes the development of these types of drive systems. The market analysis indicates an increased sale of hybrid drives in vehicles, and this means that actions taken towards of reduction of fuel consumption are still valid. The aim of this article is to indicate the indexes of performance of combustion engines in hybrid vehicles during a part of the type-approval driving test. The article analyses Toyota hybrid vehicles with particular attention paid to the parameters of the hybrid drive system and the influence of the charge level of battery on the share of the combustion engine operation in the total time of the vehicle operation. The analysis was carried out for vehicles equipped with the Toyota Hybrid Synergy Drive system working with different types of high voltage battery.

2015 ◽  
Vol 161 (2) ◽  
pp. 14-27
Author(s):  
Wojciech Cieślik ◽  
Ireneusz Pielecha ◽  
Andrzej Szałek

Continuously increasing share of the hybrid and electric vehicles in the global automotive market justifies the need for detailed analysis of the operational effectiveness of these drive systems. The aim of the study was to assess the operational conditions of the combustion engines and electric motors in hybrid drive systems – full hybrid – of the motor vehicles in urban traffic conditions. Variety of designs of such drive systems is related to the high voltage batteries used and the way of charging them. The road tests were conducted in Warsaw (urban traffic conditions) by recording the operational parameters of three vehicles and their driving systems. The conditions of operation of the combustion engine and electric motors along with the values of their high voltage battery charge level were related to the test routes. The analysis of the relative shares of engine and motor operation time in the total time of vehicle operation in urban traffic conditions was conducted. The scope of operation of the hybrid drive system utilizing only electric propulsion system was determined. The relations between the operational indexes of the hybrid propulsion (combustion engine and electric motor) in real traffic conditions and the charge level of batteries, current speeds and accelerations were shown.


2015 ◽  
Vol 160 (1) ◽  
pp. 56-61
Author(s):  
Kazimierz ROMANISZYN

Modern vehicles with hybrid combustion-electric drive systems are an important element in the strategy for reducing fuel consumption and emissions of exhaust gas components. Determinant of the use and development is to achieve substantial benefits in terms of classical powertrain vehicles equipped with internal combustion engines. This paper presents the concept of kinematic ratio selection between the engine and the electric machine. This concept is based on the analysis of the internal combustion engine load caused by the resistances of motion and the best possible assessment of the additional load caused by the operation of the generator. It is proposed that the energy transferred to the generator was taken in a most preferred area of the engine performance characteristics and generator by changing kinematic ratio between the engine and the generator. The described concept can also be used for the recovery of vehicles braking energy.


Author(s):  
Folker Renken

Vehicles with hybrid drive systems are characterized by their driving dynamics, their energy efficiency and their environment-friendliness especially. Dependent on the electrical power and the drive train structure these hybrid drives are grouped into different classes. Designations such as micro-hybrid, mild- hybrid, full-hybrid, serial-hybrid, serial/parallel-hybrid or power-split-hybrid reflect the large variance of these different drive train possibilities. In hybrid drive systems electronically controlled converters take an important role. With such a converter also the energy exchange between electrical power system and electrical machine is regulated. The reduction of the vehicle fuel consumption here is of special interest. Today's hybrid vehicles use for the control mainly information from the present driving conditions, taking into account the actual electrical power system-charge as well as the power demand of the driver. With such a control already considerable fuel reductions are reached. But additionally superimposed control and information systems promise substantial potential for more fuel reduction. With these systems an outstanding energy-saving and anticipatory way of driving could be realized. The aim is to find the best operating point in each case for the combustion engine and to adapt the charge state of the electrical power system to the respective driving situation.


2014 ◽  
Vol 158 (3) ◽  
pp. 23-35
Author(s):  
Ireneusz PIELECHA ◽  
Wojciech CIEŚLIK ◽  
Przemysław BOROWSKI ◽  
Jakub CZAJKA ◽  
Wojciech BUESCHKE

Continuous increased interest in hybrid drive systems enabling the reduction of fuel consumption and emissions of harmful substances into the atmosphere, as well as their use partly as zero-emission drive in vehicles provides the basis for the development of these types of drive systems. Such trend is indicated by sales analysis of hybrid drives, and this means that actions taken towards of reduction of fuel consumption are still justified. The article reviews combustion engines for hybrid drive systems as far as determination of their operating conditions, indicating mean effective pressure and power/displacement ratio are considered. The concept of hybridization was defined as a measure of the degree of utilization of vehicle electric drive systems (or its drive support). The analysis was conducted on the basis of vehicles equipped with different hybrid drive systems with combustion engines with spark ignition and compression ignition. The hybridization indexes for different groups of hybrid drive systems were determined and significant discrepancies in the way of their determination were pointed out.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


2021 ◽  
Vol 11 (11) ◽  
pp. 5001
Author(s):  
Robin Masser ◽  
Karl Heinz Hoffmann

Energy savings in the traffic sector are of considerable importance for economic and environmental considerations. Recuperation of mechanical energy in commercial vehicles can contribute to this goal. One promising technology rests on hydraulic systems, in particular for trucks which use such system also for other purposes such as lifting cargo or operating a crane. In this work the potential for energy savings is analyzed for commercial vehicles with tipper bodies, as these already have a hydraulic onboard system. The recuperation system is modeled based on endoreversible thermodynamics, thus providing a framework in which realistic driving data can be incorporated. We further used dissipative engine setups for modeling both the hydraulic and combustion engine of the hybrid drive train in order to include realistic efficiency maps. As a result, reduction in fuel consumption of up to 26% as compared to a simple baseline recuperation strategy can be achieved with an optimized recuperation control.


2019 ◽  
Vol 1 (1) ◽  
pp. 472-480 ◽  
Author(s):  
Máté Zöldy ◽  
Imre Zsombók

AbstractDuring our research, we focus on a less researched area in the development of autonomous vehicles. Automotive industry is turning more and more from conventional, internal combustion engine equipped vehicles to the electric cars. Today, electric driving is mostly limited to urban traffic, this is the area where range and refueling limits can be a real alternative. However, it is important to think of those who intend to use vehicle in longer distances, and hybrid technology can provide them a modern, environmentally conscious way of transport.In this article, we describe the method of creating the fuel consumption influencing factors matrix, which is the starting point of our research. We studied relevant researches and based on refueling studies we created the matrix. Based on results of real tests, we determined the factor mix that are the basis of our fuel consumption prediction model. These results will be inputs of planning routes of autonomous vehicles with optimized refueling and fuel consumption.


2019 ◽  
Vol 177 (2) ◽  
pp. 46-49
Author(s):  
Mateusz SZRAMOWIAT

The article presents currently applied construction solutions for currently used cooling systems for internal combustion engines. There were presented their defects and possible development directions were indicated. On this basis the concept of a cooling system which will enable the improvement of heat exchange in the internal combustion engine has been proposed.


2021 ◽  
Author(s):  
Andrzej Bieniek ◽  
Mariusz Graba ◽  
Jarosław Mamala ◽  
Krzysztof Prażnowski ◽  
Krystian Hennek

The analysis of energy consumption in a hybrid drive system of a passenger car in real road conditions is an important factor determining its operational indicators. The article presents energy consumption analysis of a car equipped with an advanced Plug-in Hybrid Drive System (PHEV), driving in real road conditions on a test section of about 51 km covered in various environmental conditions and seasons. Particular attention was paid to the energy consumption resulting from the cooperation of two independent drive units, analyzed in terms of the total energy expenditure. The energy consumption obtained from fuel and energy collected from the car’s batteries for each run over the total distance of 12,500 km was summarized. The instantaneous values of energy consumption for the hybrid drive per kilometer of distance traveled in car’s real operating conditions range from 0.6 to 1.4 MJ/km, with lower values relating to the vehicle operation only with electric drive. The upper range applies to the internal combustion engine, which increases not only the energy expenditure in the TTW (Tank-to-Wheel) system, but also CO2 emissions to the environment. Based on the experimental data, the curves of total energy consumption per kilometer of the road section traveled were determined, showing a close correlation with the actual operating conditions. Obtained values were compared with homologation data from the WLTP test of the tested passenger car, where the average value of energy demand is 1.1 MJ/km and the CO2 emission is 23 g/km.


2019 ◽  
Vol 9 (22) ◽  
pp. 4842 ◽  
Author(s):  
Ho Lung Yip ◽  
Aleš Srna ◽  
Anthony Chun Yin Yuen ◽  
Sanghoon Kook ◽  
Robert A. Taylor ◽  
...  

A paradigm shift towards the utilization of carbon-neutral and low emission fuels is necessary in the internal combustion engine industry to fulfil the carbon emission goals and future legislation requirements in many countries. Hydrogen as an energy carrier and main fuel is a promising option due to its carbon-free content, wide flammability limits and fast flame speeds. For spark-ignited internal combustion engines, utilizing hydrogen direct injection has been proven to achieve high engine power output and efficiency with low emissions. This review provides an overview of the current development and understanding of hydrogen use in internal combustion engines that are usually spark ignited, under various engine operation modes and strategies. This paper then proceeds to outline the gaps in current knowledge, along with better potential strategies and technologies that could be adopted for hydrogen direct injection in the context of compression-ignition engine applications—topics that have not yet been extensively explored to date with hydrogen but have shown advantages with compressed natural gas.


Sign in / Sign up

Export Citation Format

Share Document