scholarly journals The analysis of the potential for the use of gaseous fuels in the municipal bus transport in Poland – part 1

2012 ◽  
Vol 148 (1) ◽  
pp. 82-88
Author(s):  
Wojciech GIS ◽  
Edward MENES ◽  
Jerzy WAŚKIEWICZ

The paper discusses issues related to the use of compressed natural gas (CNG) in combustion engines particularly in municipal bus transport. The ecological aspects of the use of natural gas in road transport have been analyzed particularly the exhaust emissions in comparison to the emissions from diesel engines. Advantages and disadvantages of natural gas fueling as well as the current level of CNG use in transport have been presented both in Poland and worldwide. The authors have also indicated the motivating arguments for the use of natural gas.

2012 ◽  
Vol 150 (3) ◽  
pp. 17-26
Author(s):  
Wojciech GIS ◽  
Edward MENES ◽  
Jerzy WAŚKIEWICZ

The paper discusses issues related to the use of compressed natural gas (CNG) in combustion engines particularly in municipal bus transport. The ecological aspects of the use of natural gas in road transport have been analyzed particularly the exhaust emissions in comparison to the emissions from diesel engines. Advantages and disadvantages of natural gas fueling as well as the current level of CNG use in transport have been presented both in Poland and worldwide. The authors have also indicated the motivating arguments for the use of natural gas.


2019 ◽  
Vol 21 (8) ◽  
pp. 1493-1519
Author(s):  
Abhishek Y Deshmukh ◽  
Carsten Giefer ◽  
Dominik Goeb ◽  
Maziar Khosravi ◽  
David van Bebber ◽  
...  

Direct injection of compressed natural gas in internal combustion engines is a promising technology to achieve high indicated thermal efficiency and, at the same time, reduce harmful exhaust gas emissions using relatively low-cost fuel. However, the design and analysis of direct injection–compressed natural gas systems are challenging due to small injector geometries and high-speed gas flows including shocks and discontinuities. The injector design typically involves either a multi-hole configuration with inwardly opening needle or an outwardly opening poppet-type valve with small geometries, which make accessing the near-nozzle-flow field difficult in experiments. Therefore, predictive simulations can be helpful in the design and development processes. Simulations of the gas injection process are, however, computationally very expensive, as gas passages of the order of micrometers combined with a high Mach number compressible gas flow result in very small simulation time steps of the order of nanoseconds, increasing the overall computational wall time. With substantial differences between in-nozzle and in-cylinder length and velocity scales, simultaneous simulation of both regions becomes computationally expensive. Therefore, in this work, a quasi-one-dimensional nozzle-flow model for an outwardly opening poppet-type injector is developed. The model is validated by comparison with high-fidelity large-eddy simulation results for different nozzle pressure ratios. The quasi-one-dimensional nozzle-flow model is dynamically coupled to a three-dimensional flow solver through source terms in the governing equations, named as dynamically coupled source model. The dynamically coupled source model is then applied to a temporal gas jet evolution case and a cold flow engine case. The results show that the dynamically coupled source model can reasonably predict the gas jet behavior in both cases. All simulations using the new model led to reductions of computational wall time by a factor of 5 or higher.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052005
Author(s):  
M A Kovaleva ◽  
V G Shram ◽  
T N Vinichenko ◽  
E G Kravtsova ◽  
D G Slashchinin ◽  
...  

Abstract In this paper, the analysis of alternative fuels is carried out: electricity, hydrogen, biofuels (bioethanol, biodiesel, biogas), solar energy, compressed air, gas engine fuel (compressed natural gas, liquefied petroleum gas, liquefied natural gas). The advantages and disadvantages of their use are indicated according to the criteria of environmental safety, cost, and infrastructure development. It is revealed that at the moment, gas-engine fuel, in particular liquefied petroleum gas and compressed natural gas, is most suitable for the transfer of the fleet. The economic and environmental effect of the market expansion is associated with the high environmental friendliness of this type of fuel, low price, large natural reserves, the development of the petrochemical industry of the country, the reduction of financial costs for the repair and reconstruction of physically and morally outdated oil refining and liquid fuel production enterprises, promising technical and technological solutions to transport problems.


Author(s):  
Par Neiburger

Liberator Engine Company, LLC designs, develops and produces alternative fuel engines for vehicles around the globe. The Company’s 6.0 Liter Liberator™ gaseous fuels engine will have the ability to operate on Compressed Natural Gas, Liquefied Natural Gas or Liquid Propane Gas: clean, domestic, economical fuels. The Liberator engine will target OEM on road vehicles, as well as off road applications. The Liberator engine is also an excellent choice for the repower of existing diesel vehicles. The 6.0L Liberator™ engine will serve as a replacement engine for vehicle currently operating on a Cummins 5.9L diesel engine or Mercedes diesel 6.0L engine. Paper published with permission.


2020 ◽  
Vol 32 (6) ◽  
pp. 837-847
Author(s):  
Martin Jurkovič ◽  
Tomáš Kalina ◽  
Tomáš Skrúcaný ◽  
Piotr Gorzelanczyk ◽  
Vladimír Ľupták

The aim of the paper is to assess the possibility of decreasing the chosen environmental indicators like energy consumption, greenhouse gas (GHG) production and other exhaust pollutants in the selected region in Slovakia by introducing Liquefied Natural Gas (LNG) buses into bus transport. The assessment is carried out by comparing the consumption and emissions of current buses (EURO 2) in real operation, with potential buses (EURO 6) and with pilot LNG buses testing on the same lines. Comparison took place under the same conditions over the same period. The study measures the energy consumption and GHG production per bus. The research paper also compares two methodologies of calculation. The first calculation is according to the European Standard EN 16258: 2012 which specifies the general methodology for evaluation and declaration of energy consumption and GHG emissions (all services - cargo, passengers or both). The second calculation is according to the Handbook of Emission Factors for Road Transport (HBEFA). The results of the calculation are compared  by both methods, and the most suitable version of the bus in terms of GHG emissions is proposed.


2019 ◽  
Vol 176 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Michael WEIßNER ◽  
Frank BEGER ◽  
Martin SCHÜTTENHELM ◽  
Gunesh TALLU

Current and further developing CO2- and emission regulations worldwide and the competition to full electric mobility deliver a chal-lenge for internal combustion engines in general. A state of the art solution is the use of natural gas mainly contending methane to reduce CO2 significantly and to offer lowest emission levels. The EU-funded project GasOn developed engine concepts to fully exploit the advantages of CNG. This article describes the development of an innovative, monovalent engine dedicated to Compressed Natural Gas (CNG) and characterised by the lean burn concept and the innovative pre-chamber combustion.


Author(s):  
G.B. Varlamov ◽  
◽  
S.A. Glazyrin ◽  
P.A. Barabash ◽  
V.G. Petrenko ◽  
...  

The expediency of the search, development and use of alternative environmentally friendly motor fuels is scientifically substantiated, the main of which is the use of gas fuel, which is much more efficient than diesel fuel in terms of overall environmental safety. The relevance of the research carried out and the developments proposed in this article will make it possible to realize the fundamental complex advantages of the ecological and operational nature of the use of the gas-diesel cycle of the ICE operation. This is in line with the Paris Protocol on a climate to reduce greenhouse gas emissions to keep the global average temperature rising. The paper describes the main features and methods of converting diesel engines to their compressed natural gas power supply. The advantages and disadvantages of all methods of implementing the gas-diesel cycle on existing diesel installations of low and high power are analyzed in detail. The main operations and changes in operating parameters for each method of implementing the gas-diesel cycle on operating diesel engines are also described. The use of a mixed quantitative and qualitative control of the supply of compressed gas and diesel fuel for various loads of a diesel engine operating on a gas-diesel cycle has been scientifically substantiated. The systematization is carried out and the comparative characteristics of liquid and gas motor fuels, which can be used for the implementation of the gas-diesel cycle in diesel engines, are presented in tabular form, general conclusions are described.


Sign in / Sign up

Export Citation Format

Share Document