scholarly journals Effects of mixture formation strategies on combustion in dual-fuel engines – a review

2021 ◽  
Vol 184 (1) ◽  
pp. 30-40
Author(s):  
Ireneusz Pielecha ◽  
Maciej Sidorowicz

The article presents an overview of technical solutions for dual fuel systems used in internal combustion engines. It covers the historical and contemporary genesis of using two fuels simultaneously in the combustion process. The authors pay attention to the value of the excess air coefficient in the cylinder, as the ignitability of the fuel dose near the spark plug is a critical factor. The mixture formation of compression ignition based systems are also analyzed. The results of research on indirect and direct injection systems (and their combinations) have been presented. Research sections were separated based to the use of gasoline with other fuels or diesel oil with other fuels. It was found that the use of two fuels in different configurations of the fuel supply systems extends the conditions for the use of modern combustion systems (jet controlled compression ignition, reactivity controlled compression ignition, intelligent charge compression ignition, premixed charge compression ignition), which will enable further improvement of combustion efficiency.

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1830 ◽  
Author(s):  
Moonchan Kim ◽  
Jungmo Oh ◽  
Changhee Lee

Compression ignition engines used as marine engines are the most efficient internal combustion engines. They are well-established products, and millions are already on the market. Water-in-MDO (marine diesel oil) emulsions are the best alternative fuel for compression ignition engines and can be utilised with the existing setup of 2.0 L automotive common rail direct injection (CRDI) engines. They have benefits for the simultaneous reduction of both NOx and smoke (black carbon). Furthermore, they have a significant impact on the improvement of combustion efficiency. Micro-explosions are the most important phenomenon of water-in-diesel emulsions inside an internal combustion engine chamber. They affect both the emission reduction and combustion efficiency improvements directly and indirectly in accordance with the brake mean effective pressure (BMEP) and rpm. Owing to the influence of micro-emulsions on the combustion and emissions of water-in-diesel emulsion fuel, the reduction ratios of NOx and smoke in a used engine are approximately 30% and 80%, respectively. The effect of the operating parameters on micro-emulsions is presented.


Author(s):  
Marcello Canova ◽  
Shawn Midlam-Mohler ◽  
Yann Guezennec ◽  
Giorgio Rizzoni ◽  
Luca Garzarella ◽  
...  

Homogeneous Charge Compression Ignition (HCCI) is a combustion process based on a lean, homogeneous, premixed charge reacting and burning uniformly throughout the mixture volume. This principle leads to a consistent decrease in NOx and PM emissions, while the combustion efficiency remains comparable to traditional Compression Ignition Direct Injection (CIDI) engines at low and mid-load operations. However, understanding and controlling the combustion process is still extremely difficult, as well as finding a proper method for the fuel introduction. A viable method consists of premixing the charge by applying a proper fuel atomization device in the intake port, thus decoupling the HCCI mixture formation from the traditional in-cylinder injection. This avoids the traditional drawbacks associated to external Diesel mixture preparation, such as high intake heating, low compression ratio, wall wetting, and soot formation. The system, previously developed and tested on a single-cylinder engine, has been successfully applied to multi-cylinder Diesel engine for automotive applications. Building on previous modeling and experimental work, the paper reports a detailed experimental analysis of HCCI combustion with external mixture formation. In the considered testing setup, the fuel atomizer has been applied to a four-cylinder turbo-charged Common Rail Diesel engine equipped with a cooled EGR system. In order to extend the knowledge on the process and to provide a large base of data for the identification of Control-Oriented Models, Diesel-fueled HCCI combustion has been characterized over different values of loads, EGR dilution and boost pressures. The data collected were then used for the validation of a HCCI Diesel engine model that was previously built for steady state and transient simulation and for control purposes. The experimental results obtained, especially considering the emission levels and efficiency, suggest that the technology developed for external mixture formation is a feasible upgrade for automotive Diesel engines without introducing additional design efforts or constraints on the DI combustion and injection system.


2010 ◽  
Vol 141 (2) ◽  
pp. 33-39
Author(s):  
Sławomir LUFT

For many years in the Department of Automobiles and Internal Combustion Engines in Technical University of Radom there are carried out investigations on dual-fuel compression ignition engine in which the ignition is initiated by a pilot diesel oil dose and the applied main fuels have properties similar to those applied in spark ignition engines. The tested fuels were methanol, ethanol, LPG and natural gas. Analysis of the obtained results allowed to make some generalizations and to determine advantages as well as problems which should be solved for higher efficiency, power and durability. The paper will present information on efficiency, power, toxic exhaust emission and chosen parameters of combustion process of a dual-fuel compression ignition engine as well as on a difficult to control – knock combustion which may result in lower engine durability and piston crank mechanism failure.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2729
Author(s):  
Ireneusz Pielecha ◽  
Sławomir Wierzbicki ◽  
Maciej Sidorowicz ◽  
Dariusz Pietras

The development of internal combustion engines involves various new solutions, one of which is the use of dual-fuel systems. The diversity of technological solutions being developed determines the efficiency of such systems, as well as the possibility of reducing the emission of carbon dioxide and exhaust components into the atmosphere. An innovative double direct injection system was used as a method for forming a mixture in the combustion chamber. The tests were carried out with the use of gasoline, ethanol, n-heptane, and n-butanol during combustion in a model test engine—the rapid compression machine (RCM). The analyzed combustion process indicators included the cylinder pressure, pressure increase rate, heat release rate, and heat release value. Optical tests of the combustion process made it possible to analyze the flame development in the observed area of the combustion chamber. The conducted research and analyses resulted in the observation that it is possible to control the excess air ratio in the direct vicinity of the spark plug just before ignition. Such possibilities occur as a result of the properties of the injected fuels, which include different amounts of air required for their stoichiometric combustion. The studies of the combustion process have shown that the combustible mixtures consisting of gasoline with another fuel are characterized by greater combustion efficiency than the mixtures composed of only a single fuel type, and that the influence of the type of fuel used is significant for the combustion process and its indicator values.


Transport ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Maciej Mikulski ◽  
Sławomir Wierzbicki

Currently, one of the major trends in the research of contemporary combustion engines involves the potential use of alternative fuels. Considerable attention has been devoted to methane, which is the main component of Natural Gas (NG) and can also be obtained by purification of biogas. In compression-ignition engines fired with methane or Compressed Natural Gas (CNG), it is necessary to apply a dual-fuel feeding system. This paper presents the effect of the proportion of CNG in a fuel dose on the process of combustion. The recorded time series of pressure in a combustion chamber was used to determine the repeatability of the combustion process and the change of fuel compression-ignition delay in the combustion chamber. It has been showed that NG does not burn completely in a dual-fuel engine. The best conditions for combustion are ensured with higher concentrations of gaseous fuel. NG ignition does not take place simultaneously with diesel oil ignition. Moreover, if a divided dose of diesel is injected, NG ignition probably takes place at two points, as diesel oil.


2008 ◽  
Vol 132 (1) ◽  
pp. 3-16
Author(s):  
Jerzy MERKISZ ◽  
Marek WALIGÓRSKI

The article concerns the possibilities of use of the method being able to assess of the combustion process and its lack in internal combustion engines of railway traction vehicles, that bases on the use of vibration signal parameters. The paper includes the results of research conducted on the engine test bench with a single cylinder research and compression-ignition engine with direct injection, and tests for the engine of a diesel locomotive in the exploitation condition. Possibility of the vibration signal estimators application to the assessment of a combustion process lack in an internal combustion engine and a high reliability of combustion process diagnostics basing on the above method have been proved.


Author(s):  
Stephen A. Ciatti ◽  
Thomas Wallner ◽  
Henry Ng ◽  
William F. Stockhausen ◽  
Brad Boyer

Although hydrogen is considered one of the most promising future energy carriers, there are several challenges to achieving a “hydrogen economy,” including finding a practical, efficient, cost-effective end-use device. Using hydrogen as a fuel for internal combustion engines is seen as a bridging technology toward a large-scale hydrogen infrastructure. To facilitate high-efficiency, high-power-density use of hydrogen with near-zero emissions in an internal combustion engine, detailed analysis of the hydrogen combustion process is necessary. This paper presents thermodynamic results regarding engine performance and emissions behavior during investigations performed on a single-cylinder research engine fueled by pressurized gaseous hydrogen. Avoiding combustion anomalies is one of the necessary steps to further improve the hydrogen engine power output at high-load operation while, at the same time, reducing fuel consumption and emissions during part-load operation. The overall target of the investigations is an improved combustion concept especially designed for hydrogen-engine-powered vehicles. Future activities include performing optical imaging of hydrogen combustion by using an endoscope. We will also investigate supercharged external mixture formation, as well as hydrogen direct-injection operation.


2014 ◽  
Vol 21 (3) ◽  
pp. 86-94 ◽  
Author(s):  
Zdzisław Stelmasiak

Abstract This paper concerns analysis of possible use of alcohols for the feeding of self - ignition and spark-ignition engines operating in a dual- fuel mode, i.e. simultaneously combusting alcohol and diesel oil or alcohol and petrol. Issues associated with the requirements for application of bio-fuels were presented with taking into account National Index Targets, bio-ethanol production methods and dynamics of its production worldwide and in Poland. Te considerations are illustrated by results of the tests on spark- ignition and self- ignition engines fed with two fuels: petrol and methanol or diesel oil and methanol, respectively. Te tests were carried out on a 1100 MPI Fiat four- cylinder engine with multi-point injection and a prototype collector fitted with additional injectors in each cylinder. Te other tested engine was a SW 680 six- cylinder direct- injection diesel engine. Influence of a methanol addition on basic operational parameters of the engines and exhaust gas toxicity were analyzed. Te tests showed a favourable influence of methanol on combustion process of traditional fuels and on some operational parameters of engines. An addition of methanol resulted in a distinct rise of total efficiency of both types of engines at maintained output parameters (maximum power and torque). In the same time a radical drop in content of hydrocarbons and nitrogen oxides in exhaust gas was observed at high shares of methanol in feeding dose of ZI (petrol) engine, and 2-3 fold lower smokiness in case of ZS (diesel) engine. Among unfavourable phenomena, a rather insignificant rise of CO and NOx content for ZI engine, and THC and NOx - for ZS engine, should be numbered. It requires to carry out further research on optimum control parameters of the engines. Conclusions drawn from this work may be used for implementation of bio-fuels to feeding the combustion engines.


Author(s):  
Ronald O. Grover ◽  
Junseok Chang ◽  
Edward R. Masters ◽  
Paul M. Najt ◽  
Aditya Singh

A combined experimental and analytical study was carried out to understand the improvement in combustion performance of a four-valve spark ignition direct injection (SIDI) wall-guided engine operating at lean, stratified idle with enhanced in-cylinder charge motion by deactivating one of the two intake valves. A fully warmed-up engine was operated at low speed, light load by injecting the fuel from a pressure-swirl injector during the compression stroke to produce a stratified fuel cloud surrounding the spark plug at the time of ignition. Steady state flow-bench measurements and computational fluid dynamics (CFD) calculations showed that valve deactivation primarily increased the in-cylinder swirl intensity as compared with opening both intake valves. Engine dynamometer measurements showed an increase in charge motion led to improved combustion stability, increased combustion efficiency, lower fuel consumption, and higher dilution tolerance. A CFD study was conducted using in-house models of spray and combustion to simulate the engine operating with and without valve deactivation. The computations demonstrated that the improved combustion was primarily driven by higher laminar flame speeds through enhanced mixing of internal residual gases, better containment of the fuel cloud within the piston bowl, and higher postflame diffusion burn rates during the initial, main, and late stages of the combustion process, respectively.


2013 ◽  
Vol 135 (9) ◽  
Author(s):  
B. Yadollahi ◽  
M. Boroomand

Direct injection of natural gas into the cylinder of spark ignition (SI) engines has shown a great potential to achieve the best fuel economy and reduced emission levels. Since the technology is rather new, in-cylinder flow phenomena have not been completely investigated. In this study, a numerical model has been developed in AVL FIRE software to perform an investigation of natural gas direct injection into the cylinder of spark ignition internal combustion engines. In this regard, two main parts have been taken into consideration aiming to convert a multipoint port fuel injection (MPFI) gasoline engine to a direct injection natural gas (NG) engine. In the first part of the study, multidimensional simulations of transient injection process, mixing, and flow field have been performed. Using the moving mesh capability, the validated model has been applied to methane injection into the cylinder of a direct injection engine. Five different piston head shapes have been taken into consideration in the investigations. An inwardly opening single-hole injector has been adapted to all cases. The injector location has been set to be centrally mounted. The effects of combustion chamber geometry have been studied on the mixing of air-fuel inside the cylinder via the quantitative and qualitative representation of results. In the second part, an investigation of the combustion process has been performed on the selected geometry. The spark plug location and ignition timing have been studied as two of the most important variables. Simulation of transient injection was found to be a challenging task because of required computational effort and numerical instabilities. Injection results showed that the narrow bowl piston head geometry is the most suited geometry for NG direct injection (DI) application. A near center position has been shown to be the best spark plug location based on the combustion studies. It has been shown that advanced ignitions timings of up to 50 degrees crank angle ( °CA) should be used in order to obtain better combustion performance.


Sign in / Sign up

Export Citation Format

Share Document