scholarly journals Combustion Thermodynamics of Ethanol, n-Heptane, and n-Butanol in a Rapid Compression Machine with a Dual Direct Injection (DDI) Supply System

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2729
Author(s):  
Ireneusz Pielecha ◽  
Sławomir Wierzbicki ◽  
Maciej Sidorowicz ◽  
Dariusz Pietras

The development of internal combustion engines involves various new solutions, one of which is the use of dual-fuel systems. The diversity of technological solutions being developed determines the efficiency of such systems, as well as the possibility of reducing the emission of carbon dioxide and exhaust components into the atmosphere. An innovative double direct injection system was used as a method for forming a mixture in the combustion chamber. The tests were carried out with the use of gasoline, ethanol, n-heptane, and n-butanol during combustion in a model test engine—the rapid compression machine (RCM). The analyzed combustion process indicators included the cylinder pressure, pressure increase rate, heat release rate, and heat release value. Optical tests of the combustion process made it possible to analyze the flame development in the observed area of the combustion chamber. The conducted research and analyses resulted in the observation that it is possible to control the excess air ratio in the direct vicinity of the spark plug just before ignition. Such possibilities occur as a result of the properties of the injected fuels, which include different amounts of air required for their stoichiometric combustion. The studies of the combustion process have shown that the combustible mixtures consisting of gasoline with another fuel are characterized by greater combustion efficiency than the mixtures composed of only a single fuel type, and that the influence of the type of fuel used is significant for the combustion process and its indicator values.

2018 ◽  
Vol 173 (2) ◽  
pp. 19-29
Author(s):  
Maciej SIDOROWICZ ◽  
Ireneusz PIELECHA

The article contains an analysis of the fuel dose combustion phenomena and exhaust emissions in a direct injection system of an SI engine for variable injector location in the combustion chamber. The research performed is a continuation of the research presented in the article CE-2018-104. The tests were performed using the AVL Fire 2017 simulation environment. 27 injector placement combinations in three planes were analyzed: axial distance from the cylinder axis, injector depth relative to the head and angular position relative to the cylinder axis. An optimal solution was chosen, taking into account the significance of individual indicators. It was shown that the greatest impact in terms of the most advantageous combustion process indicators is the injector setting depth in the combustion chamber cavity, while the distance from the cylinder axis is of secondary importance. The smallest changes in the combustion and emission factors values are seen with the change of the injector placement angle (in the value range used in this study).


2019 ◽  
Vol 18 (2) ◽  
pp. 89
Author(s):  
G. G. Narcizo ◽  
D. A. Miranda

The quality of the air-fuel mixture in internal combustion engines directly affects the combustion efficiency, therefore a good design of the combustion chamber combined with the correct fuel injection system, can provide a better use of this mixture and increase the efficiency of the engine. Considering these aspects, this scholarly work presents a comparative study of the indirect injection system and direct fuel injection, analyzing the way the mixture behaves in these two conditions. For this, the Ansys Fluent simulation software was used, in which were applied computational fluid dynamics simulations of the air-fuel mixture. The objective of this scholarly work is to contribute to the development of the injection systems, enabling the improvement of new studies and developments of new nozzle models can be performed.


Author(s):  
Z Huang ◽  
S Shiga ◽  
T Ueda ◽  
H Nakamura ◽  
T Ishima ◽  
...  

Cycle-by-cycle variations of natural gas direct injection (CNG DI) combustion were studied by using a rapid compression machine. Results show that CNG DI combustion can realize high combustion stability with less cycle-by-cycle variation in the maximum pressure rise, the maximum rate of pressure rise and the maximum rate of heat release at the given equivalence ratios. Mixture stratification and fast flame propagation with the aid of turbulence produced by the high speed fuel jet are considered to be responsible for these behaviours. Cycle-by-cycle variations in combustion durations and combustion products present higher magnitudes than those of maximum pressure rise and maximum rate of heat release. Cycle-by-cycle variations of CO and unburned CH4 show an interdependence with the variation of the late combustion duration, and the variation of NO x shows an interdependence with the variation of the rapid combustion duration. Cycle-by-cycle variations are found to be insensitive to the equivalence ratios in CNG DI combustion.


Author(s):  
Josef Graf ◽  
Martin Weinrotter ◽  
Herbert Kopecek ◽  
Ernst Wintner

Due to the progresses in exhaust emission after-treatment systems and in the development of new combustion processes, the S.I. engine has been booming in the past few years. But the efficiency will have to be improved in the future. Because of its thermodynamic benefits, the S.I. direct injection engine of the second generation — so called air guided system — shows the highest potential for gasoline engines to reduce fuel consumption. However, there are restrictions when using conventional spark ignition system. They concern the optimum position of ignition initialization and spark-plug wear, the latter being caused by inhomogeneous mixture distribution. The laser-induced ignition enables a flexible choice of the ignition location and a wear resistant initialization of the combustion process. The most crucial component here is the optics (the combustion-chamber window), through which the laser beam passes into the combustion chamber. In this paper, laser-induced ignition is discussed and its potential compared to a conventional ignition system is presented. In addition, several optic configurations are presented as well as tests regarding the minimum required laser energy and the optic contamination and self-cleaning effect of the optics. At the Institute of Internal Combustion Engines at the Vienna University of Technology the optic contamination and self-cleaning effect, which is crucial for a long-term operation, was tested on a two-cylinder research engine.


Author(s):  
Marcello Canova ◽  
Shawn Midlam-Mohler ◽  
Yann Guezennec ◽  
Giorgio Rizzoni ◽  
Luca Garzarella ◽  
...  

Homogeneous Charge Compression Ignition (HCCI) is a combustion process based on a lean, homogeneous, premixed charge reacting and burning uniformly throughout the mixture volume. This principle leads to a consistent decrease in NOx and PM emissions, while the combustion efficiency remains comparable to traditional Compression Ignition Direct Injection (CIDI) engines at low and mid-load operations. However, understanding and controlling the combustion process is still extremely difficult, as well as finding a proper method for the fuel introduction. A viable method consists of premixing the charge by applying a proper fuel atomization device in the intake port, thus decoupling the HCCI mixture formation from the traditional in-cylinder injection. This avoids the traditional drawbacks associated to external Diesel mixture preparation, such as high intake heating, low compression ratio, wall wetting, and soot formation. The system, previously developed and tested on a single-cylinder engine, has been successfully applied to multi-cylinder Diesel engine for automotive applications. Building on previous modeling and experimental work, the paper reports a detailed experimental analysis of HCCI combustion with external mixture formation. In the considered testing setup, the fuel atomizer has been applied to a four-cylinder turbo-charged Common Rail Diesel engine equipped with a cooled EGR system. In order to extend the knowledge on the process and to provide a large base of data for the identification of Control-Oriented Models, Diesel-fueled HCCI combustion has been characterized over different values of loads, EGR dilution and boost pressures. The data collected were then used for the validation of a HCCI Diesel engine model that was previously built for steady state and transient simulation and for control purposes. The experimental results obtained, especially considering the emission levels and efficiency, suggest that the technology developed for external mixture formation is a feasible upgrade for automotive Diesel engines without introducing additional design efforts or constraints on the DI combustion and injection system.


2021 ◽  
Vol 184 (1) ◽  
pp. 30-40
Author(s):  
Ireneusz Pielecha ◽  
Maciej Sidorowicz

The article presents an overview of technical solutions for dual fuel systems used in internal combustion engines. It covers the historical and contemporary genesis of using two fuels simultaneously in the combustion process. The authors pay attention to the value of the excess air coefficient in the cylinder, as the ignitability of the fuel dose near the spark plug is a critical factor. The mixture formation of compression ignition based systems are also analyzed. The results of research on indirect and direct injection systems (and their combinations) have been presented. Research sections were separated based to the use of gasoline with other fuels or diesel oil with other fuels. It was found that the use of two fuels in different configurations of the fuel supply systems extends the conditions for the use of modern combustion systems (jet controlled compression ignition, reactivity controlled compression ignition, intelligent charge compression ignition, premixed charge compression ignition), which will enable further improvement of combustion efficiency.


2014 ◽  
Vol 660 ◽  
pp. 431-435
Author(s):  
Him Ramsy ◽  
Thahir Ahmad ◽  
M. Jaat ◽  
Amir Khalid

Compression period in a diesel engine is generally seen as initial characteristics before injection into combustion chamber. A free-piston type rapid compression machine (RCM) has been designed simulate the combustion phenomena in order to observe the chemical and physical kinetics studies at elevated pressures and temperatures. Purpose of this study is to clarify the effects of wall cylinder temperature on air heat release, especially during compression period. This method can a light piston is pneumatically shot and gets hammered in stopper at compression end. Measurements were made on a light piston compress in a rapid compression machine (RCM) with intended to simulate the actual compression period related phenomena. During this phenomena, the ambient temperature influences from the cylinder wall temperature has appear beneficial for the biodiesel fuel premixing and achieving best mixture preparation There are three tests will used to investigate the effects of the variant temperature of wall cylinder during compression period. Results show high temperature on cylinder wall will be effects decrease during temperature drop after compression stroke. The new characteristics rapid compression machine (RCM) is to develop and analyse before combustion process.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2941
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik ◽  
Karol Grab-Rogaliński

The main objective of this study was assessment of the performance, emissions and combustion characteristics of a diesel engine using RME–1-butanol blends. In assessing the combustion process, great importance was placed on evaluating the stability of this process. Not only were the typical COVIMEP indicators assessed, but also the non-burnability of the characteristic combustion stages: ignition delay, time of 50% heat release and the end of combustion. The evaluation of the combustion process based on the analysis of heat release. The tests carried out on a 1-cylinder diesel engine operating at a constant load. Research and evaluation of the combustion process of a mixture of RME and 1-butanol carried out for the entire range of shares of both fuels up to 90% of 1-butanol energetic fraction. The participation of butanol in combustion process with RME increased the in-cylinder peak pressure and the heat release rate. With the increase in the share of butanol there was noted a decrease in specific energy consumption and an increase in engine efficiency. The share of butanol improved the combustion stability. There was also an increase in NOx emissions and decrease in CO and soot emissions. The engine can be power by blend up to 80% energy share of butanol.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


2013 ◽  
Vol 465-466 ◽  
pp. 265-269 ◽  
Author(s):  
Mohamad Jaat ◽  
Amir Khalid ◽  
Bukhari Manshoor ◽  
Siti Mariam Basharie ◽  
Him Ramsy

s :This paper reviews of some applications of optical visualization system to compute the fuel-air mixing process during early stage of mixture formation and late injection in Diesel Combustion Engine. This review has shown that the mixture formation is controlled by the characteristics of the injection systems, the nature of the air swirl and turbulence in thecylinder, and spray characteristics. Few experimental works have been investigated and found that the effects of injection pressure and swirl ratio have a great effect on the mixture formation then affects to the flame development and combustion characteristics.This paper presents the significance of spray and combustion study with optical techniques access rapid compression machine that have been reported by previous researchers. Experimental results are presentedin order to provide in depth knowledge as assistance to readers interested in this research area. Analysis of flame motion and flame intensity in the combustion chamber was performed using high speed direct photographs and image analysis technique. The application of these methods to the investigation of diesel sprays highlights mechanisms which provide a better understanding of spray and combustion characteristics.


Sign in / Sign up

Export Citation Format

Share Document