scholarly journals Inventory of pollutant emission from motor vehicles in Poland using the COPERT 5 software

2019 ◽  
Vol 178 (3) ◽  
pp. 150-154 ◽  
Author(s):  
Katarzyna BEBKIEWICZ ◽  
Zdzisław CHŁOPEK ◽  
Jakub LASOCKI ◽  
Krystian SZCZEPAŃSKI ◽  
Magdalena ZIMAKOWSKA-LASKOWSKA

This article presents results of the inventory of pollutant emission from motor vehicles in Poland. To determine emission from motor vehicles in Poland COPERT 5 software was used for the first time. In addition, a comparison of the national emission from motor vehi-cles in 2016 and in 2015 was included. Pollutants harmful to health were considered primarily: carbon monoxide, organic compounds, nitrogen oxides and particulate matter. Emission of substances contributing to the intensification of the greenhouse effect were also examined: carbon dioxide, ammonia and nitrous oxide. It was found that the relative increase in volume of emission of carbon monoxide and non-methane volatile organic compounds is less than 10%, and nitrogen oxides and particulate matter less than 15%. The relative increase in carbon dioxide emission is approximately 14%, which corresponds to a relative increase in fuel consumption. The relative increase of volume of heavy metal emission is similar. The assessment of the energy emission factor (emission of pollution related to energy equal to used fuel) proves that – amongst pollutants harmful to health – for carbon monoxide and non-methane volatile organic compounds there is a relative reduction by approximately 5% in 2016, and for nitrogen oxides and particulate matter – increase by approximately (3–4)%.

2021 ◽  
Vol 11 (19) ◽  
pp. 9084
Author(s):  
Katarzyna Bebkiewicz ◽  
Zdzisław Chłopek ◽  
Hubert Sar ◽  
Krystian Szczepański ◽  
Magdalena Zimakowska-Laskowska

The article presents the results of studies on the influence of the thermal state of vehicle combustion engines on pollutant emissions. This influence was analyzed based on data from Poland’s inventory of pollutant emissions for the years 1990–2017. The results show that during engine warm-up, carbon monoxide emission constitutes the largest share (up to 50%) in the national annual total emission. Volatile organic compounds are next in the ranking, whereas the share of nitrogen oxides is the lowest (less than 5%). Under the model traffic conditions, close to those in Poland’s cities in winter, simulation tests regarding additional pollutant emissions from passenger cars during engine warm-up were also carried out. As a result of the cold-start emissive behavior of internal combustion engines, emissions of carbon monoxide and volatile organic compounds showed a considerably greater impact on national pollutant emission, as compared to carbon dioxide, nitrogen oxides and particulate matter. This is particularly evident for the results of the inventory of pollutant emissions from road transport.


2019 ◽  
Vol 177 (2) ◽  
pp. 7-11
Author(s):  
Zdzisław CHŁOPEK ◽  
Jakub LASOCKI ◽  
Katarzyna STRZAŁKOWSKA ◽  
Dagna ZAKRZEWSKA

In the large urban areas, in middle latitudes, as in case of Poland, the cause of poor air quality is immission: in winter particulate matter PM10 and PM2.5, in summer – ozone and nitrogen oxides (or nitrogen dioxide). In the whole country, road transport is significantly responsible for the emission of nitrogen oxides (30%), carbon monoxide (20%) and less for emission of particulate matter (a few percent). In the case of other pollutants, the emission of non-metallic organic compounds is less than 10% (including polycyclic organic compounds – just over 0.5%), and sulfur oxides – only 0.03%! To analyze impact of automotive industry on air quality, pollutant emission data from two stations in Krakow were selected. These stations are known for poor air quality – the stations are: Dietla Street – with a high level of traffic and Kurdwanów – place located far from traffic routes. It was found that other objects than automotive vehicles are the dominant source of dust. These are industrial sources and – above all – energy sources, especially individual heating installations. Particularly large dust pollution occurs in winter and it is not always in areas with intense traffic. There was a strong dependence between immission of pollutants and road traffic, however, this dependence is not dominant in assessing the risk of air quality in urban agglomerations.


Earth ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 667-673
Author(s):  
Amirreza Talaiekhozani ◽  
Majid Lotfi Ghahroud ◽  
Shahabaldin Rezania

Nowadays, electricity consumption has increased worldwide due to the activity of cryptocurrency miners. Much of Iran’s electricity is generated by fossil fuel power plants. So, generating more electricity means producing more air pollutants in Iran. There is not sufficient information about the effects of cryptocurrency mining on Iran’s air pollution. This study aims to estimate the amount of carbon monoxide (CO), sulfur oxides (SOx), nitrogen oxides (NOx), volatile organic compounds (VOCs), and particulate matter (PM) emitted by Iran’s power plants when they generate extra electricity for cryptocurrency miners. In this study, we firstly estimated the amount of fuel used for the electricity needed for cryptocurrency miners. Then, the amounts of emitted NOx, CO, VOCs, SOx, and total PM for generation of such electricity were estimated via the guidelines of the European Environment Agency for emission inventory estimation. The results showed that an on average of 3530, 1547, 103, 11, and 35 tons of NOx, CO, VOCs, SOx, and total PM, respectively, have been emitted into the atmosphere in Iran annually.


2021 ◽  
Author(s):  
Jingjing Fang ◽  
Kexian Li ◽  
Xinhong Xu ◽  
Xiaomeng Ren ◽  
Lu Jiang

The purpose of this study is to study the air contaminants in the cabins of underwater vehicle. The basic data help for the better research of the underwater vehicle cabin environment standard and the control strategy. Pretreatment and analysis method of volatile organic compounds was preconcentration combined with gas chromatography under the condition of liquid nitrogen and detected by chromatography-mass spectrometry. The pollution of particles, carbon monoxide and carbon dioxide during the underwater vehicle voyage were monitored by online monitoring instrument. Altogether 34 kinds of pollution components were detected, most of which were low in concentration. Some are low olfactory threshold or high toxic components, such as dimethyldisulfide, benzene, carbon disulfide, trichloromethane, and several reached to ppm level. The contamination of the particles was mainly fine particles and part cabins exceeded the national standard of indoor air quality. The highest concentration of carbon dioxide in accommodation space exceeded the permissible concentration of atmosphere composition aboard diesel underwater vehicle compartments. The increase submerged time made the environment in the cabins deteriorate. The concentration of trace contaminants may close to or beyond the relevant standards with the prolonged time. The volatile organic compounds, particles, carbon monoxide and carbon dioxide aggravated the air circumstance in the cabins. It should be determined the permissible concentration of air contaminants in underwater vehicle as soon as possible.


This paper mainly focuses on determination of particulate matter (PM), carbon dioxide and Carbon monoxide, relative humidity (RH), temperature, volatile organic compounds (VOC) and dew point in eleven most polluted areas in Hyderabad using equipment (3MTM EVM series) environmental monitor. In this paper we represented above parameters in the form of graph using Detection Management software in the duration of readings taken in a day and also we have done mapping using QGIS software


Sign in / Sign up

Export Citation Format

Share Document