scholarly journals Influence of cetane-detergent additives into diesel fuel with RME content increased to 10% on the parameters of indicator diagrams and rate of heat release in a diesel engine

2019 ◽  
Vol 179 (4) ◽  
pp. 226-235
Author(s):  
Winicjusz STANIK ◽  
Jerzy CISEK

This publication is the next part of the article “The influence of cetane-detergent additives in diesel fuel increased to 10% of RME content on energy parameters and exhaust gas composition of a diesel engine”. The cause-effect analysis of the phenomena related to the impact of 3 additive packages used in diesel oil with RME content increased to 10% (compare to standard diesel fuel with 7% of RME) was described. The basis for the analysis of the impact of the tested fuels on energy parameters and composition of exhaust gases were the parameters of indicator diagrams and heat release parameters. It was found that the first set of additives affects the delay of auto-ignition of fuel and kinetic fuel combustion speed only at low engine loads. In this range of engine operation the NOx concentration in the exhaust gas is low and besides there is a large of EGR.The second additive package was operated at high engine loads but its impact on the lower self-ignition delay was quantitatively small. Therefore, in the third packet of additives, the amount of additives used in the second packet was doubled. Then a satisfactory shortening of the self-ignition delay and reduction of the max rate of kinematic heat release was achieved as a reason of a reduction of NOx concentration in the exhaust up to 8% (compared to the reference fuel).

Author(s):  
Shuonan Xu ◽  
Hirotaka Yamakawa ◽  
Keiya Nishida ◽  
Zoran Filipi

Increasingly stringent fuel economy and CO2 emission regulations provide a strong impetus for development of high-efficiency engine technologies. Diesel engines dominate the heavy duty market and significant segments of the global light duty market due to their intrinsically higher thermal efficiency compared to spark-ignited (SI) engine counterparts. Predictive simulation tools can significantly reduce the time and cost associated with optimization of engine injection strategies, and enable investigation over a broad operating space unconstrained by availability of prototype hardware. In comparison with 0D/1D and 3D simulations, Quasi-Dimensional (quasi-D) models offer a balance between predictiveness and computational effort, thus making them very suitable for enhancing the fidelity of engine system simulation tools. A most widely used approach for diesel engine applications is a multizone spray and combustion model pioneered by Hiroyasu and his group. It divides diesel spray into packets and tracks fuel evaporation, air entrainment, gas properties, and ignition delay (induction time) individually during the injection and combustion event. However, original submodels are not well suited for modern diesel engines, and the main objective of this work is to develop a multizonal simulation capable of capturing the impact of high-injection pressures and exhaust gas recirculation (EGR). In particular, a new spray tip penetration submodel is developed based on measurements obtained in a high-pressure, high-temperature constant volume combustion vessel for pressures as high as 1450 bar. Next, ignition delay correlation is modified to capture the effect of reduced oxygen concentration in engines with EGR, and an algorithm considering the chemical reaction rate of hydrocarbon–oxygen mixture improves prediction of the heat release rates. Spray and combustion predictions were validated with experiments on a single-cylinder diesel engine with common rail fuel injection, charge boosting, and EGR.


Author(s):  
Gautam Kalghatgi ◽  
Leif Hildingsson ◽  
Bengt Johansson

Much of the technology in advanced diesel engines, such as high injection pressures, is aimed at overcoming the short ignition delay of conventional diesel fuels to promote premixed combustion in order to reduce NOx and smoke. Previous work in a 2 l single-cylinder diesel engine with a compression ratio of 14 has demonstrated that gasoline fuel, because of its high ignition delay, is very beneficial for premixed compression-ignition compared with a conventional diesel fuel. We have now done similar studies in a smaller—0.537 l—single-cylinder diesel engine with a compression ratio of 15.8. The engine was run on three fuels of very different auto-ignition quality—a typical European diesel fuel with a cetane number (CN) of 56, a typical European gasoline of 95 RON and 85 MON with an estimated CN of 16 and another gasoline of 84 RON and 78 MON (estimated CN of 21). The previous results with gasoline were obtained only at 1200 rpm—here we compare the fuels also at 2000 rpm and 3000 rpm. At 1200 rpm, at low loads (∼4 bars indicated mean effective pressure (IMEP)) when smoke is negligible, NOx levels below 0.4 g/kWh can be easily attained with gasoline without using exhaust gas recirculation (EGR), while this is not possible with the 56 CN European diesel. At these loads, the maximum pressure-rise rate is also significantly lower for gasoline. At 2000 rpm, with 2 bars absolute intake pressure, NOx can be reduced below 0.4 g/kW h with negligible smoke (FSN<0.1) with gasoline between 10 bars and 12 bars IMEP using sufficient EGR, while this is not possible with the diesel fuel. At 3000 rpm, with the intake pressure at 2.4 bars absolute, NOx of 0.4 g/kW h with negligible smoke was attainable with gasoline at 13 bars IMEP. Hydrocarbon and CO emissions are higher for gasoline and will require after-treatment. High peak heat release rates can be alleviated using multiple injections. Large amounts of gasoline, unlike diesel, can be injected very early in the cycle without causing heat release during the compression stroke and this enables the heat release profile to be shaped.


Author(s):  
Shuonan Xu ◽  
Hirotaka Yamakawa ◽  
Keiya Nishida ◽  
Zoran Filipi

Increasingly stringent fuel economy and CO2 emission regulations provide a strong impetus for development of high efficiency engine technologies. Diesel engines dominate the heavy duty market and significant segments of the global light duty market due to their intrinsically higher thermal efficiency compared to spark ignited (SI) engine counterparts. Predictive simulation tools can significantly reduce the time and cost associated with optimization of engine injection strategies, and enable investigation over a broad operating space unconstrained by availability of prototype hardware. In comparison with 0-D/1-D and 3-D simulations, Quasi-D models offer a balance between predictiveness and computational effort, thus making them very suitable for enhancing the fidelity of engine system simulation tools. A most widely used approach for diesel engine applications is a multi-zone spray and combustion model pioneered by Hiroyasu and his group. It divides diesel spray into packets and tracks fuel evaporation, air entrainment, gas properties and ignition delay (induction time) individually during the injection and combustion event. However, original sub-models are not well suited for modern diesel engines, and the main objective of this work is to develop a multi-zonal simulation capable of capturing the impact of high-injection pressures and Exhaust Gas Recirculation (EGR). In particular, a new spray tip penetration sub-model is developed based on measurements obtained in a high-pressure, high-temperature constant volume combustion vessel for pressures as high as 1450 bar. Next, ignition delay correlation is modified to capture the effect of reduced oxygen concentration in engines with EGR, and an algorithm considering the chemical reaction rate of hydrocarbon-oxygen mixture improves prediction of the heat release rates. Spray and combustion predictions were validated with experiments on a single-cylinder diesel engine with common rail fuel injection, charge boosting, and EGR.


Author(s):  
Gautam Kalghatgi ◽  
Leif Hildingsson ◽  
Bengt Johansson

Much of the technology in advanced diesel engines, such as high injection pressures, is aimed at overcoming the short ignition delay of conventional diesel fuels to promote premixed combustion in order to reduce NOx and smoke. Previous work in a 2 litre single cylinder diesel engine with a compression ratio of 14 has demonstrated that gasoline fuel, because of its high ignition delay, is very beneficial for premixed compression ignition compared to a conventional diesel fuel. We have now done similar studies in a smaller — 0.537 litre — single cylinder diesel engine with a compression ratio of 15.8. The engine was run on three fuels of very different auto-ignition quality — a typical European diesel fuel with a cetane number (CN) of 56, a typical European gasoline of 95 RON and 85 MON with an estimated CN of 16 and another gasoline of 84 RON and 78 MON (estimated CN of 21). The previous results with gasoline were obtained only at 1200 rpm — here we compare the fuels also at 2000 rpm and 3000 rpm. At 1200 rpm, at low loads (∼4 bar IMEP) when smoke is negligible, NOx levels below 0.4 g/kWh can be easily attained with gasoline without using EGR while this is not possible with the 56 CN European diesel. At these loads, the maximum pressure rise rate is also significantly lower for gasoline. At 2000 rpm, with 2 bar absolute intake pressure, NOx can be reduced below 0.4 g/kWh with negligible smoke (FSN <0.1) with gasoline between 10 and 12 bar IMEP using sufficient EGR while this is not possible with the diesel fuel. At 3000 rpm, with the intake pressure at 2.4 bar absolute, NOx of 0.4 g/KWh with negligible smoke was attainable with gasoline at 13 bar IMEP. Hydrocarbon and CO emissions are higher for gasoline and will require after-treatment. High peak heat release rates can be alleviated using multiple injections. Large amounts of gasoline, unlike diesel, can be injected very early in the cycle without causing heat release during the compression stroke and this enables the heat release profile to be shaped.


Author(s):  
Myung Yoon Kim ◽  
WooHeum Cho ◽  
Eun-Hyun Lee ◽  
Jerok Chun

The impact of soybean methyl ester (SME) on the injection mass curve, exhaust emissions, engine performance, and exhaust gas temperatures of a common-rail direct injection diesel engine have been investigated. In this study, 30% SME blended diesel fuel (BD30) has been used as a fuel in the engine and results of the investigation were compared to those obtained using petroleum diesel fuel. The results of the investigation show that the change in injection mass curve when using BD30 instead of diesel was insignificant. A combustion analysis shows BD30 has a shorter ignition delay at part-load operating condition where heavy exhaust gas recirculation (EGR) rate is used. This difference in behavior is due to the oxygen contents and lower stoichiometric air-fuel ratio of BD30, which leads to higher O2 concentration in the exhaust gas. At part-load operating conditions, BD30 results showed 53% reduction in smoke at the expense of 18% increase in NOx emission. The full load engine power for BD30 was decreased by 2.1∼3.8% using EMS (engine management system) configurations without torque adjustment to compensated reduction in calorific value of BD30. When the engine power was so adjusted that BD30 produced the same power as diesel fuel, a lower exhaust gas temperature was observed at full load operating condition. Considering that the LHV (lower heating value) of BD30 is 2.6% lower than that of diesel fuel, there may be no factors that cause deterioration of thermal efficiency on using BD30 under all operating conditions.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402098840
Author(s):  
Mohammed S Gad ◽  
Sayed M Abdel Razek ◽  
PV Manu ◽  
Simon Jayaraj

Experimental work was done to examine the impact of diesel fuel with alumina nanoparticles on combustion characteristics, emissions and performance of diesel engine. Alumina nanoparticles were mixed with crude diesel in various weight fractions of 20, 30, and 40 mg/L. The engine tests showed that nano alumina addition of 40 ppm to pure diesel led to thermal efficiency enhancement up to 5.5% related to the pure diesel fuel. The average specific fuel consumption decrease about neat diesel fuel was found to be 3.5%, 4.5%, and 5.5% at dosing levels of 20, 30, and 40 ppm, respectively at full load. Emissions of smoke, HC, CO, and NOX were found to get diminished by about 17%, 25%, 30%, and 33%, respectively with 40 ppm nano-additive about diesel operation. The smaller size of nanoparticles produce fuel stability enhancement and prevents the fuel atomization problems and the clogging in fuel injectors. The increase of alumina nanoparticle percentage in diesel fuel produced the increases in cylinder pressure, cylinder temperature, heat release rate but the decreases in ignition delay and combustion duration were shown. The concentration of 40 ppm alumina nanoparticle is recommended for achieving the optimum improvements in the engine’s combustion, performance and emission characteristics.


Author(s):  
Ming Zheng ◽  
David K. Irick ◽  
Jeffrey Hodgson

For diesel engines (CIDI) the excessive use of exhaust gas recirculation (EGR) can reduce in-cylinder oxides of nitrogen (NOx) generation dramatically, but engine operation can also approach zones with high instabilities, usually accompanied with high cycle-to-cycle variations and deteriorated emissions of total hydrocarbon (THC), carbon monoxide (CO), and soot. A new approach has been proposed and tested to eliminate the influences of recycled combustibles on such instabilities, by applying an oxidation catalyst in the high-pressure EGR loop of a turbocharged diesel engine. The testing was directed to identifying the thresholds of stable operation at high rates of EGR without causing cycle-to-cycle variations associated with untreated recycled combustibles. The elimination of recycled combustibles using the oxidation catalyst showed significant influences on stabilizing the cyclic variations, so that the EGR applicable limits are effectively extended. The attainability of low NOx emissions with the catalytically oxidized EGR is also evaluated.


Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


Sign in / Sign up

Export Citation Format

Share Document