Universal method of track structure elements’ bearing capacity assessment on the basis of beam on elastic foundation simulation model

Author(s):  
Vadym Govorov ◽  
Naryman Sultanov ◽  
Maksim Chusovytyn

Objective: To develop a universal method of track structure elements’ strength analysis, taking into account variable cross-section of elements and the form of foundation. To provide a graph-analytical model of analysis, as the basis of the method, for calculating stress-strain state characteristics of a beam on elastic foundation. Methods: Graph-analytical method was used to identify the characteristics of stress-strain state of a beam on elastic foundation. The method in question is an alternative one, compared to a routine theoretical calculation, the basis of which is a fundamental equation of a bending line and further from this equation, by means of successive integration method, any characteristic of stress-strain state of a beam on elastic foundation can be obtained. Results: A universal graph-analytical method was developed, taking into account factors, which cause deviation from a theoretical scheme of a beam bearing on elastic foundation, such as the possibility of calculating different elements of track structure bearing capacity, considering its variable cross-section (sole chairs, ferroconcrete sleepers, tongues, frogs, etc.), foundation form alternation, on which the calculated elements bear, as well as unequal elasticity of foundation. Practical importance: Application of such a universal method, which differs from an accepted idealized scheme of a beam bearing on elastic foundation, offers wide perspectives in stress-strain state assessment of not only new tracks, being designed, but also in the process of their current state. Application of the method in question makes it possible to avoid analytical lengthy mathematical calculations with any form of cross-section alternation along the length of a beam, with any form of foundation, as well as heavy expenditures, compared to other modern bearing capacity calculating methods, such as finite element method, finite difference method, and finite volume method.

Author(s):  
E M Babich ◽  
S S Gomon

Existing norms of design for wooden constructions valid in different countries including Ukraine entirely disregard the effect of low-cycle repeated loadings during the operation of buildings and structures. The article deals with development of the bearing capacity computation of the bending elements manufactured from solid and glue-laminated wood exposed to repeated loadings in accordance with the deformation model.Equilibrium equations for computing the bending element made of wood after being exposed to repeated loadings are presented in the article. The deformation method is proposed for the computation of the rectangular wooden beams manufactured from solid and glued laminated wood with allowance for the occurrence of folds in the compression zone.The results of the research allow designing the solid and glue-laminated wooden constructions taking into consideration the possibilities of the material and peculiar features of the performance of the element, which in turn will allow choosing the cross-section of the elements of building structures more economically.On the basis of the study of the process of layer deformation by section height and the determination of the characteristics of the stress-strain state of these layers under the effect of repeated loading, it is possible to fulfill more accurate computation of the elements manufactured from wood at different stages of the stress-strain state through destruction.


2014 ◽  
Vol 13 (3) ◽  
pp. 065-070
Author(s):  
Zinoviy Blikharskyy ◽  
Dmytro Dubizhanskyy ◽  
Roman Khmil

Bearing capacity of normal cross section of bending concrete elements reinforced with reinforced concrete ring under load was investigated. Experimental researches of 4 sets of beams with the total number of 16 units were carried out. The results of changes of stress-strain state settings depending on the load level, additional reinforcement, influence of limit level load were analyzed. The three characteristic stages of stress-strain state of reinforced concrete beams strengthened with reinforced concrete ring were defined. Results of experimental investigations of bearing capacity of normal cross section of strengthened beams with reinforced concrete ring under load were presented. Enhancing effect was calculated. According to the results of researches of strengthened beams plots of strain of working armature depending on current bending moment were constructed.


Vestnik MGSU ◽  
2021 ◽  
pp. 463-472
Author(s):  
Zaven G. Ter-Martirosyan ◽  
Armen Z. Ter-Martirosyan ◽  
Ahmad Othman

Introduction. In case of brief exposure to static loads or dynamic loads, in conditions of absence of drainage, distribution of total stresses between the skeleton of soil and pore gas-containing water should be taken in account. The situation of the stress-strain state of the base is further complicated when we consider the degree of water-saturation of soil of the foundation (0.8 < Sr ≤ 1). The aim of the study is to pose and solve problem of the stress-strain state of a water-saturated soil massif, Including settlement and bearing capacity of a water-saturated base of a foundation of finite width, depending on the degree of water saturation of soils, taking into account the linear and nonlinear properties of the skeleton of soil and the compressibility of pore gas-containing water. Materials and methods. Henckyʼs system of physical equations are used as a calculation model to describe the relationship between deformation and stresses of soil, which takes into account the influence of the average stress on the deformation and strength properties of the soil. This system allows us to represent the linear deformation of the soil as the sum of the volumetric and shear components of the soil of this deformation. In addition allows us too to determine the deformation of the layer of soil, as part of the compressible thickness of the base of foundation with finite width under conditions of free deformations. Results. Depending on the linear and nonlinear deformation parameters, the settlement can be developed with a damped curve (S – p) and stabilize, and can be developed with a non-damped curve (S – p) and moved to the stage of progressive settlement. Conclusions. Solutions have been made for cases when the water-saturation of the base soils changes in the range of 0.8 to 1.0. It is shown that the settlement and bearing capacity of a water-saturated base significantly depends on the degree of water saturation of soils.


2020 ◽  
Vol 25 (1) ◽  
pp. 236-242
Author(s):  
T.I. Zaitseva ◽  
I.V. Blinova ◽  
A.M. Uzdin

AbstractThe problem of gap estimation for a break of a continuous welded rail is studied. The track is represented as a semi-infinite rod on elastic-based damping. Static and dynamic solutions are obtained. It is shown that during the rail break, the dynamic factor does not exceed 1.5. We derive equations for thermal deformation of the welded rail of jointless track on an elastic foundation in the presence of the insert into the base with another characteristic stiffness. It is shown that the presence of the insertion of up to 20% of the length of the rail, with both large and small stiffness, has a little effect on the stress-strain state (SSS) of the track. The presence of a rigid insert may increase the clearance of an accidental break of the rail, which has a negative effect on traffic safety.


2018 ◽  
Vol 284 ◽  
pp. 71-76
Author(s):  
P.V. Solovyev ◽  
A.I. Gomzin ◽  
L.A. Ishbulatov ◽  
S.N. Galyshev ◽  
F.F. Musin

In this article the results of stress-strain state investigation for composite airplane wing stringer with different layers stacking structures are presented. As an object of research, a stringer made of composite carbon with V-shaped cross-section is considered. Due to the stress-strain state analysis of various stringer structures, the most effective structure for stringer layers stacking is selected, both in the view of providing the most rigidity and optimal perception by the stringer the field of external loads, which are most typical for the conditions of its operation.


Author(s):  
O. Hrevtsev ◽  
N. Selivanova ◽  
P. Popovych ◽  
L. Poberezhny ◽  
O. Shevchuk ◽  
...  

Purpose: To ensure an adequate level of accuracy, it is rational to study the ponderomotor forces of the ring, which drive a hollow disk of variable thickness, hung on the ring. Design/methodology/approach: The solution of the motion problem of a hollow disk of variable thickness suspended on a force ring of rectangular cross section is based on the method of solving the equations of the theory of thermoelasticity. The stress-strain state, as well as the motion of the specified body of rotation, the disk, in studies in a cylindrical coordinate system, under the action of ponderomotor forces. Findings: The motion equation of a hollow disk hung on a force ring-torus is made, exact solutions of the motion equations of a ring in the torus form of rectangular cross section are found. New component expressions of ponderomotor forces, which appear from the action of the ring's own electromagnetic field and cause the motion of a hollow disk, have been found on the basis of Maxwell's equations. It is proved that at high speeds and low natural accelerations the stress - strain state of the disk material does not cause the destruction of the structure. Research limitations/implications: Calculations of ponderomorphic forces are valid for the ring, which drives a hollow disk of variable thickness, hung on the ring. Practical implications: It is proved that at high velocities and small natural accelerations the stress-strain state of the disk medium does not cause structural damage. It is determined that the rotation in the direction of movement at an angle of 90 degrees changes only the direction of the acceleration vector without increasing its value. Originality/value: The dependences between own time and coordinate time are formulated. It is proved that a small change in the natural time for the studied disk can significantly change the coordinate time, and the pulsed electromagnetic field provides the ability to cover infinitely large distances over finite periods of time.


Sign in / Sign up

Export Citation Format

Share Document