scholarly journals Avaliação do Perfil de Sensibilidade aos Antibióticos na Infeção Urinária da Comunidade

2014 ◽  
Vol 27 (6) ◽  
pp. 737 ◽  
Author(s):  
Rui Passadouro ◽  
Raquel Fonseca ◽  
Felícia Figueiredo ◽  
Andreia Lopes ◽  
Cristina Fernandes

<strong>Introduction:</strong> The urinary tract infections, after respiratory infections, are the most common in the community. The knowledge about the prevalence of microbial strains and their antibiotic susceptibility is crucial to establish an effective empirical therapy. The aim of this study was to determine the antibiotic susceptibility patterns of bacterial strains isolated from positive urine cultures performed in patients from the central region of Portugal.<br /><strong>Material and Methods:</strong> We carried out a documental analysis of 6008 urine bacteriological exams, to be made available to physicians, most of which run through the automated system VITEK 2, bioMérieux. The majority (80%) of the urine bacteriological exams were from female. Escherichia coli was the most prevalent bacterial pathogen (65.9%), followed by Klebsiella spp (12%).<br /><strong>Results:</strong> Nitrofurantoin showed high levels of activity (96%) for Escherichia coli, as well as Fosfomycin (96.6%). Amoxicillin-clavulanic acid presents an activity level of only 81.1% for the same germ. Quinolones exhibit efficacy to only 78% of the strains of Escherichia coli, below the Fosfomycin and Nitrofurantoin. Nitrofurantoin showed high levels of activity (96%) for E. coli as well as Fosfomycin (96.6%). Amoxicillin-Clavulanic Acid presents a level of activity of only 81.1% for the same germ. The quinolones have a efficacy for only 78% of strains of E. coli, lower than Fosfomycin.<br /><strong>Discussion:</strong> Escherichia Coli was the most prevalent uropathogen (65.9%). High efficacy against this pathogenic agent was found for Fosfomycin (96.6%) and Nitrofurantoin (96%).<br /><strong>Conclusion:</strong> Further antimicrobial surveillance studies should be developed, in order to formulate local empirical therapy<br />recommendations for optimized therapeutical choices.<br /><strong>Keywords:</strong> Urinary Tract Infections; Drug Resistance, Bacterial; Anti-Bacterial Agents; Community-Acquired Infections.<br />

Author(s):  
Mengistu Abayneh ◽  
Getnet Tesfaw ◽  
Alemseged Abdissa

Background. Klebsiella pneumoniae and Escherichia coli are the major extended-spectrum β-lactamase- (ESBL-) producing organisms increasingly isolated as causes of complicated urinary tract infections and remain an important cause of failure of therapy with cephalosporins and have serious infection control consequence. Objective. To assess the prevalence and antibiotics resistance patterns of ESBL-producing Escherichia coli and Klebsiella pneumoniae from community-onset urinary tract infections in Jimma University Specialized hospital, Southwest Ethiopia, 2016. Methodology. A hospital-based cross-sectional study was conducted, and a total of 342 urine samples were cultured on MacConkey agar for the detection of etiologic agents. Double-disk synergy (DDS) methods were used for detection of ESBL-producing strains. A disc of amoxicillin + clavulanic acid (20/10 µg) was placed in the center of the Mueller–Hinton agar plate, and cefotaxime (30 µg) and ceftazidime (30 µg) were placed at a distance of 20 mm (center to center) from the amoxicillin + clavulanic acid disc. Enhanced inhibition zone of any of the cephalosporin discs on the side facing amoxicillin + clavulanic acid was considered as ESBL producer. Results. In the current study, ESBL-producing phenotypes were detected in 23% (n = 17) of urinary isolates, of which Escherichia coli accounts for 76.5% (n = 13) and K. pneumoniae for 23.5% (n = 4). ESBL-producing phenotypes showed high resistance to cefotaxime (100%), ceftriaxone (100%), and ceftazidime (70.6%), while both ESBL-producing and non-ESBL-producing isolates showed low resistance to amikacin (9.5%), and no resistance was seen with imipenem. In the risk factors analysis, previous antibiotic use more than two cycles in the previous year (odds ratio (OR), 6.238; 95% confidence interval (CI), 1.257–30.957; p = 0.025) and recurrent UTI more than two cycles in the last 6 months or more than three cycles in the last year (OR, 7.356; 95% CI, 1.429–37.867; p = 0.017) were found to be significantly associated with the ESBL-producing groups. Conclusion. Extended-spectrum β-lactamases- (ESBL-)producing strain was detected in urinary tract isolates. The occurrence of multidrug resistance to the third-generation cephalosporins, aminoglycosides, fluoroquinolones, trimethoprim-sulfamethoxazole, and tetracyclines is more common among ESBL producers. Thus, detecting and reporting of ESBL-producing organisms have paramount importance in the clinical decision-making.


2014 ◽  
Vol 63 (2) ◽  
pp. 229-234 ◽  
Author(s):  
Kamel Adwan ◽  
Naser Jarrar ◽  
Awni Abu-Hijleh ◽  
Ghaleb Adwan ◽  
Elena Awwad

Antibiotic resistance of Escherichia coli isolated from urinary tract infections (UTIs) is increasing worldwide. A total of 41 E. coli isolates were obtained from urine samples from hospitalized patients with a UTI in three hospitals in the northern districts of the West Bank, Palestine during March and June 2011. Resistance rates were: erythromycin (95 %), trimethoprim–sulfamethoxazole (59 %), ciprofloxacin (56 %), gentamicin (27 %), imipenem (22 %), amoxicillin (93 %), amoxicillin–clavulanic acid (32 %), ceftazidime (66 %) and cefotaxime (71 %). No meropenem-resistant isolates were identified in this study. Among the isolates, phylogenetic group B2 was observed in 13 isolates, D in 12 isolates, A in 11 isolates and B1 in five isolates. Thirty-five of the isolates were positive for an extended-spectrum β-lactamase phenotype. Among these isolates, the bla CTX-M gene was detected in 25, and eight harboured the bla TEM gene. None of the isolates contained the bla SHV gene. Transformation experiments indicated that some of the β-lactamase genes (i.e. bla CTX-M and bla TEM) with co-resistance to erythromycin and gentamicin were plasmid encoded and transmissible. Apart from this, enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) revealed that the 41 isolates were genetically diverse and comprised a heterogeneous population with 11 ERIC-PCR profiles at a 60 % similarity level.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Antonio Sorlózano-Puerto ◽  
José María Gómez-Luque ◽  
Juan de Dios Luna-del-Castillo ◽  
José María Navarro-Marí ◽  
José Gutiérrez-Fernández

Background.The objective of this study was to identify the bacteria most frequently responsible for urinary tract infection (UTI) in the population of under-2-year-olds in our geographic area and to evaluate the activity of antibiotics widely used for UTI treatment during a 4-year study period.Materials and Methods.A retrospective analysis was conducted of data on the identification and susceptibility of microorganisms isolated in urine samples from children under 2 years of age.Results.A total of 1,045 uropathogens were isolated.Escherichia coliaccounted for the majority (60.3%) of these, followed byEnterococcus faecalis(22.4%) andKlebsiellaspp. (6.5%). The highestE. colisusceptibility rates (>90%) were to piperacillin-tazobactam, cefuroxime, cefotaxime, ceftazidime, imipenem, gentamicin, nitrofurantoin, and fosfomycin, and the lowest were to amoxicillin-clavulanic acid and cotrimoxazole. Among all bacteria isolated, we highlight the overall high activity of piperacillin-tazobactam, imipenem, nitrofurantoin, and fosfomycin against both community and hospital isolates and the reduced activity of amoxicillin-clavulanic acid, cephalosporins, gentamicin, and cotrimoxazole. There was no significant change in the total activity of any of the studied antibiotics over the 4-year study period.Conclusion.Empiric treatment with amoxicillin-clavulanic acid, cotrimoxazole, cephalosporins, and gentamicin may be inadequate due to their limited activity against uropathogens in our setting.


Author(s):  
Alaa Abood Yasir OKAB ◽  
Manal B SALIH

Escherichia coli (E. coli) is the most common type of pathogen that causes Urinary tract infection disease. It can be presented as a pathogenic or non-pathogenic strain and found not only in the animal but also in the human intestine. This bacterium can cause opportunistic infection when the human host comprised of thalassemia patients or changes the healthy hemostatic flora. This study aimed to analyze the presence of bacteria in thalassemia patients with urinary tract infection. A total of 303 samples were collected during the period from August 2019 to January 2020 from thalassemia patients who suffered from urinary tract infection. The results showed that there were 6.9% of patients infected with E. coli, 2.6% of patients were infected with S. aureus, 0.7% with both Proteus and Klebsiella, while 89.1% of patients had a negative sample for bacteria. Also, the incidence of urinary tract infections in females is higher than in males. Besides, its occurrence in rural areas is higher than in city residents. Moreover, among 16 antibiotics tested to sensitize bacteria to antibiotics, Imipenem showed 100% efficacy on all isolated bacteria. In contrast, Netilmicin showed 80.1% efficacy, Gentamycin 80.1%, and Amikacin 76.2%. Ampicillin, Aztreonam, Amoxicillin-Clavulanic Acid, Tetracycline, and Ticarcillin-Clavulanic Acid, did not show any effectiveness toward the bacteria while other antibiotics showed different activities. Furthermore, the isolated microbes from thalassemia patients were the highest resistance to antibiotics in comparison with other studies, and this antibiotic-resistant may be due to the weakening of the patient's immune status and frequent blood taking and the antibodies it contains.


Author(s):  
Alaa Abood Yasir Okab ◽  
Manal Salih

Escherichia coli (E. coli) is the most common type of pathogen that causes Urinary tract infection disease. It can be presented as pathogenic or non-pathogenic strain and found not only in the animal but also in the human intestine. This bacterium can cause opportunistic infection when the human host comprised of thalassemia patients or changes the healthy hemostatic flora. This study aimed to analyze the presence of bacteria in thalassemia patients with urinary tract infection. A total of 303 samples were collected during the period from August 2019 to January 2020 from thalassemia patients who suffered from urinary tract infection. The results showed that there were 6.9% of patients infected with E. coli, 2.6% of patients were infected with S. aureus, 0.7% with both Proteus and Klebsiella, while 89.1% of patients had a negative sample for bacteria. Also, the incidence of urinary tract infections in females is higher than in males. Besides, its occurrence in rural areas is higher than in city residents. Moreover, among 16 antibiotics tested to sensitize bacteria to antibiotics, Imipenem showed 100% efficacy on all isolated bacteria. In contrast, Netilmicin showed 80.1% efficacy, Gentamycin 80.1%, and Amikacin 76.2%. Ampicillin, Aztreonam, Amoxicillin-Clavulanic Acid, Tetracycline, and Ticarcillin-Clavulanic Acid, did not show any effectiveness toward the bacteria while other antibiotics showed different activities. Furthermore, the isolated microbes from thalassemia patients were the highest resistance to antibiotics in comparison with other studies, and this antibiotic-resistant may be due to the weakening of the patient's immune status and frequent blood taking and the antibodies it contains.


2021 ◽  
Vol 9 (1) ◽  
pp. 075-085
Author(s):  
Abdoulaye Makanéra ◽  
Talibi Camara ◽  
Amadou Sadjo Diallo ◽  
Rabouan Mohamed Chamassi ◽  
Mariam Condé ◽  
...  

Introduction: Escherichia coli (E. coli) is one of the main bacterial species associated with urinary tract infections. Nowadays, this bacterium is becoming more and more resistant to antibiotics. Objective: The aim of this study was to determine the antibiotic sensitivity profiles of all strains of E. coli isolated from urine during the period from September 1st, 2018 to March 13th, 2019 at the Biomedical Laboratory of the China-Guinea Friendship Hospital of Kipé in Conakry. Materiel and Methods: Cultures were done on different agar media. Bacterial identification, antibiograms and determination of minimum inhibitory concentrations (MIC) were performed on the Vitek 2 Compact 15 automated system. Results: A total of 66 strains of E. coli have been isolated from patients of both sexes. The sex ratio (M/F) was 0.43. The mean age of the patients was 50.83 years. The majority of strains were sensitive to imipenem (96.96%), amikacin (96.96%), ertapenem (94.73%), gentamicin (69.23%), tobramycin (60, 60%), cefoxitin (64.28%), cefotaxime (62.50%), piperacillin/tazobactam (77.4%), amoxicillin/clavulanic acid (50.00%) and nitrofurantoin (87%). In contrast, the majority of strains were resistant to ampicillin (81.81%), cefalotin (62.02%), ticarcillin (88.00%), nalidixic acid (82.75%), ciprofloxacin (56.06%), ofloxacin (56.00%) and combination of trimethoprim/sulfamethoxazole (83.60%), sometimes with high MICs. Conclusion: Our results show that urinary tract infections due to E. coli are more frequently observed in females than in males. Some of these strains studied exhibited multidrug resistance profiles to antibiotics. Among the classes of antibiotics tested, carbapenemes, nitrofurans, aminoglycosides, appear to be more active on E. coli uropathogenes in Guinea.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 284 ◽  
Author(s):  
Olga Maria Rostkowska ◽  
Robert Kuthan ◽  
Anna Burban ◽  
Jagoda Salińska ◽  
Michał Ciebiera ◽  
...  

Background: Urinary tract infections (UTIs) are the most common bacterial infections among kidney transplant (KTX) recipients. The purpose of this study was to analyze antimicrobial resistance (AMR) in four most common pathogens responsible for UTIs in KTX recipients and determine risk factors (RF) for resistance in the same group. Methods: Analyzed antibiograms were based on urine samples positive for bacterial growth of 105 colony-forming units (CFU)/mL obtained from hospitalized adult KTX recipients presenting with UTI symptoms upon admission to the center in years 2011–2018. Results: In total, 783 antibiograms were analyzed for Klebsiella pneumoniae (258 samples, 33.0%), Escherichia coli (212, 27.0%), Enterococcus faecalis (128, 24.0%), and Enterococcus faecium (125, 16.0%). The decrease in susceptibility of E. coli to amoxicillin/clavulanic acid (62.9% vs. 40.0%) and ciprofloxacin (100% to 40.0%) was observed. Susceptibility to gentamicin increased from 33.3% to 92.9% in E. faecium. Susceptibility to tigecycline remained 100% through all years in case of E. faecalis and E. faecium. Male gender was a RF for resistance to amoxicillin/clavulanic acid (p = 0.008), ciprofloxacin (p = 0.0003), trimethoprim/sulfamethoxazole (p = 0.00009), ceftriaxone (p = 0.0001), and cefuroxime axetil (p = 0.00038) in K. pneumoniae and against gentamicin in E. faecalis (p = 0.015). Higher resistance to ampicillin in E. faecalis (p = 0.012) and to ciprofloxacin (p = 0.0003), trimethoprim/sulfamethoxazole (p = 0.007), piperacillin/tazobactam (p = 0.003), ceftriaxone (p = 0.001), and cefuroxime axetil (p = 0.013) in K. pneumoniae was observed in higher age groups of patients. Diabetes as a cause of kidney insufficiency (p = 0.026) and kidney-pancreas transplantation (p = 0.014) was RF for resistance to ceftriaxone in K. pneumoniae. Conclusions: AMR in uropathogens from KTX recipients fluctuated. There were identifiable RFs for resistance in the examined bacteria–antibiotic combinations. We recommend continuous mapping of site-specific microorganisms as etiology and susceptibility may vary between institutions and over time.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1348
Author(s):  
Lívia Slobodníková ◽  
Barbora Markusková ◽  
Michal Kajsík ◽  
Michal Andrezál ◽  
Marek Straka ◽  
...  

Urinary tract infections (UTIs) are among the events that most frequently need medical intervention. Uropathogenic Escherichia coli are frequently their causative agents and the infections are sometimes complicated by the presence of polyresistant nosocomial strains. Phage therapy is a tool that has good prospects for the treatment of these infections. In the present study, we isolated and characterized two bacteriophages with broad host specificity against a panel of local uropathogenic E. coli strains and combined them into a phage cocktail. According to genome sequencing, these phages were closely related and belonged to the Tequatrovirus genus. The newly isolated phages showed very good activity on a panel of local clinical E. coli strains from urinary tract infections. In the form of a two-phage cocktail, they were active on E. coli strains belonging to phylogroups B2 and D, with relatively lower activity in B1 and no response in phylogroup A. Our study is a preliminary step toward the establishment of a national phage bank containing local, well-characterized phages with therapeutic potential for patients in Slovakia.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Dana Willner ◽  
Serene Low ◽  
Jason A. Steen ◽  
Narelle George ◽  
Graeme R. Nimmo ◽  
...  

ABSTRACTUrinary tract infections (UTIs) are one of the most commonly acquired bacterial infections in humans, and uropathogenicEscherichia colistrains are responsible for over 80% of all cases. The standard method for identification of uropathogens in clinical laboratories is cultivation, primarily using solid growth media under aerobic conditions, coupled with morphological and biochemical tests of typically a single isolate colony. However, these methods detect only culturable microorganisms, and characterization is phenotypic in nature. Here, we explored the genotypic identity of communities in acute uncomplicated UTIs from 50 individuals by using culture-independent amplicon pyrosequencing and whole-genome and metagenomic shotgun sequencing. Genus-level characterization of the UTI communities was achieved using the 16S rRNA gene (V8 region). Overall UTI community richness was very low in comparison to other human microbiomes. We strain-typedEscherichia-dominated UTIs using amplicon pyrosequencing of the fimbrial adhesin gene,fimH. There were nine highly abundantfimHtypes, and each UTI sample was dominated by a single type. Molecular analysis of the corresponding clinical isolates revealed that in the majority of cases the isolate was representative of the dominant taxon in the community at both the genus and the strain level. Shotgun sequencing was performed on a subset of eightE. coliurine UTI and isolate pairs. The majority of UTI microbial metagenomic sequences mapped to isolate genomes, confirming the results obtained using phylogenetic markers. We conclude that for the majority of acute uncomplicatedE. coli-mediated UTIs, single cultured isolates are diagnostic of the infection.IMPORTANCEIn clinical practice, the diagnosis and treatment of acute uncomplicated urinary tract infection (UTI) are based on analysis of a single bacterial isolate cultured from urine, and it is assumed that this isolate represents the dominant UTI pathogen. However, these methods detect only culturable bacteria, and the existence of multiple pathogens as well as strain diversity within a single infection is not examined. Here, we explored bacteria present in acute uncomplicated UTIs using culture-independent sequence-based methods.Escherichia coliwas the most common organism identified, and analysis ofE. colidominant UTI samples and their paired clinical isolates revealed that in the majority of infections the cultured isolate was representative of the dominant taxon at both the genus and the strain level. Our data demonstrate that in most cases single cultured isolates are diagnostic of UTI and are consistent with the notion of bottlenecks that limit strain diversity during UTI pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document