scholarly journals Effect of Incubation Study of Coffee Husk on the Amendment of Chemical Properties on Acid Soil

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 219 ◽  
Author(s):  
Mehnaz Mosharrof ◽  
Md. Kamal Uddin ◽  
Shamshuddin Jusop ◽  
Muhammad Firdaus Sulaiman ◽  
S. M. Shamsuzzaman ◽  
...  

To mitigate global climate change and simultaneously increase soil productivity, the use of biochar in agriculture can be a modern agro-technology that can help in reducing greenhouse gas emissions, enhancing soil carbon sequestration, and ultimately increasing crop yield. This study aimed to evaluate the effects of biochar and lime application on the chemical properties of acid soil and the emission of CO2. A 60-day incubation study was conducted with eleven treatments (T) in which two different biochar produced from rice husk (RHB) and oil palm empty fruit bunches (EFBB) at two rates (10 and 15 t ha−1) and on three rates of dolomitic limestone (100%, 75%, and 50%), recommended rate of NPK and a control (no amendment). The result showed that biochar and lime significantly increased soil pH, available P, and decreased exchangeable Al compared to the control. The pH increase was 44.02% compared to the control treatment on day 15, and the available P was found to be 22.44 mg kg−1 on day 30 from Treatment 7 (75% lime + 15 t ha−1 RHB). The cumulative CO2 emission from T7 was 207.40 μmol CO2 m−2 that decreased 139.41% compared to the control. Our findings conclude that RHB with 75% lime has more potential than EFBB to increase nutrient availability and reduce the emission of CO2 in acid soil.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ali Maru ◽  
Osumanu Ahmed Haruna ◽  
Walter Charles Primus

The excessive use of nitrogen (N) fertilizers in sustaining high rice yields due to N dynamics in tropical acid soils not only is economically unsustainable but also causes environmental pollution. The objective of this study was to coapply biochar and urea to improve soil chemical properties and productivity of rice. Biochar (5 t ha−1) and different rates of urea (100%, 75%, 50%, 25%, and 0% of recommended N application) were evaluated in both pot and field trials. Selected soil chemical properties, rice plants growth variables, nutrient use efficiency, and yield were determined using standard procedures. Coapplication of biochar with 100% and 75% urea recommendation rates significantly increased nutrients availability (especially P and K) and their use efficiency in both pot and field trials. These treatments also significantly increased rice growth variables and grain yield. Coapplication of biochar and urea application at 75% of the recommended rate can be used to improve soil chemical properties and productivity and reduce urea use by 25%.


2019 ◽  
Vol 05 (02) ◽  
pp. 08-11
Author(s):  
Mamatha D. ◽  
Gowda R. C. ◽  
Shivakumara M. N.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fikeremareyam Chulo ◽  
Fanuel Laekemariam ◽  
Alemayehu Kiflu

Understanding the nutrient dynamics in acid soil is fundamental to carry out proper management. The study was conducted to investigate phosphorus (P) pools and selected properties under different rates of lime for acid nitisols of Farawocha, Southern Ethiopia. Four lime rates incubated for a month in three replications were tested. The lime rates were 0 t/ha (0%), 5.25 t/ha (50%), 10.5 t/ha (100%), and 15.75 t/ha (150%). Lime requirement (LR) for 100% was calculated targeting soil pH of 6.5. Data on the P pools such as soluble P (P-sol) and bounded forms of P with iron (Fe-P), aluminum (Al-P), calcium (Ca-P), organic part (Org-P), residual P (Res-P), and total of P fractions were measured. In addition, changes in soil chemical properties such as pH, exchangeable acidity, calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), copper (Cu), boron (B), zinc (Zn), and manganese (Mn) were analyzed. The result showed that total P was 357.5 mg/kg. Compared to nontreated soil, liming at a rate of 15.75 t/ha significantly improved P-sol (34.2%, r2 = 0.88), Ca-P (61.6%, r2 = 0.92), and Res-P (195%, r2 = 0.94); however, it reduced Fe-P (58.5%, r2 = −0.83), Al-P (71%, r2 = −0.97), and Org-P (19.1%, r2 = 0.93). Overall, the P-associated fractions in the soil, regardless of the lime rates, were in the order of Org_P > Res_P > Fe_P > Ca_P > Al_P > P-sol. Liming raised soil pH by 2.1 units (4.5 to 6.6) over nonlimed soil, whereas it reduced exchangeable acidity from 4.18 to 0.23 meq/100 g soil. Available P, Ca, Mg, S, Cu, Zn, and B contents were significantly improved with lime application. However, liming reduced Fe and Mn contents. In conclusion, these findings showed that liming facilitated the release of P from various pools, modified pH and exchangeable acidity, and resulted in beneficial changes for most of the soil chemical properties.


2020 ◽  
Vol 53 (1) ◽  
pp. 1
Author(s):  
Mohsen Jalali ◽  
Maryam Saeedi Lotf ◽  
Faranak Ranjbar

<p>Salinization and sodification of agricultural lands in arid and semi-arid regions of the world are two limiting factors in the crop production. This study was conducted to evaluate the effect of readily available agricultural residues on changing some chemical properties of saline-sodic soils. Wheat, potato, sunflower, and canola residues were separately added into three saline-sodic soils at a rate of 2% by weight and thoroughly mixed with soils. Control and treated soils were incubated for 168 days at a constant moisture and temperature. The pH, electrical conductivity (EC), soluble cations, available nitrate (NO3-) and phosphorous (P), cation exchange capacity (CEC), and exchangeable sodium percentage (ESP) were measured during the incubation. The EC increased in the response to the incorporation of plant residues, whereas the pH was reduced. The application of organic components in soils increased CEC and decreased ESP. The results showed that the maximum reduction in ESP was observed in the potato treatment because of the highest Ca2+ concentration. The average reduction in ESP of treated soil samples at the end of incubation followed this order: 16.1% (potato residue-treated soil) &gt;12.7% (canola residue-treated soil) &gt;11.1% (wheat residue-treated soil) &gt;9.6% (sunflwer residue-treated soil). The potato residue was the most effective amendment in changing the chemical properties of saline-sodic soils in comparison with other organic residues. The results indicated that the application of organic residues had a positive impact on reducing the soil sodicity and improving the soil fertility depending on their chemical composition.</p>


Soil Research ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 411
Author(s):  
Jin-Hua Yuan ◽  
Sheng-Zhe E ◽  
Zong-Xian Che

Mineral composition and alkaline properties of palygorskite (Pal), and its ameliorative effects on chemical properties of acid soil were investigated. Dolomite was the main form of alkali in Pal and the acid neutralisation capacity of Pal was 215 cmol kg–1. Incubation experiments indicated that Pal incorporation increased soil pH, cation exchange capacity, base saturation and exchangeable K+, Na+, Ca2+ and Mg2+ contents, and decreased the levels of exchangeable H+, Al3+ and acidity, over a 1-year period. The ameliorative mechanisms were the dissolution of major alkaline matter in Pal (i.e. dolomite), and the exchange between released Ca2+ and Mg2+ with H+ in acidic soil. Hence, Pal can be used as a moderate acidic soil amendment.


2000 ◽  
Vol 36 (3) ◽  
pp. 397-413 ◽  
Author(s):  
A. D. NOBLE ◽  
A. P. HURNEY

In many highly weathered soils of the humid tropics, crop exploitation of the subsoil environment is limited through acid soil infertility. Since the use of mechanical profile modification is often prohibitive, surface incorporation of soil amendments is often the only means available to rectify this problem. A field trial was established with sugarcane on a strongly Acidic Dystrophic Brown Dermosol (Oxic Humitropept) in 1978 to evaluate the effects of surface incorporated lime additions on yield and performance of sugarcane. Eighteen years after the establishment of this trial, significant responses in cane yield were still evident following a single application of 5 t lime ha−1 made in 1978, as well as repeated applications of 5 t ha−1 on three occasions over the past 18 years. Progressive reductions in exchangeable acidity were accompanied by increases in subsoil Ca2+ and Mg2+. Soil pH increased significantly to a depth of 100 cm, this being attributed to the formation of ion pairs with NO3 in the surface soil, the subsequent leaching of these complexes and the differential uptake of NO3 at depth by roots. The results from this long-term study indicate that surface incorporation of lime is an economically viable approach to the remediation of subsoil acidity on soils such as those studied, namely, those with a low inherent cation exchange capacity and anion exchange capacity.


2010 ◽  
Vol 34 (4) ◽  
pp. 1231-1239 ◽  
Author(s):  
Adônis Moreira ◽  
Nand Kumar Fageria

Alfalfa is an important forage crop with high nutritive value, although highly susceptible to soil acidity. Liming is one of the most efficient and prevailing practices to correct soil acidity and improve alfalfa yield. The objective of this study was to evaluate response to liming of alfalfa grown in a greenhouse on a Typic Quartzipsamment soil. The treatments consisted of four lime rates (0, 3.8, 6.6 and 10.3 Mg ha-1) and two cuts. Alfalfa dry matter increased quadratically with increasing lime rates. In general, dry matter yield was maximized by a lime rate of 8.0 Mg ha-1. Except for the control, the dry matter nutrient contents in the treatments were adequate. The positive linear correlation between root and nodule dry matter with lime rates indicated improvement of these plant traits with decreasing soil acidity. The soil acidity indices pH, base saturation, Ca2+ concentration, Mg2+ concentration, and H + Al were relevant factors in the assessment of alfalfa yield. The magnitude of influence of these soil acidity indices on yield as determined by the coefficient of determination (R²) varied and decreased in the order: base saturation, H + Al, pH, Ca and Mg concentrations. Optimum values of selected soil chemical properties were defined for maximum shoot dry matter; these values can serve as a guideline for alfalfa liming to improve the yield of this forage on acid soils.


2001 ◽  
Vol 2 (2) ◽  
pp. 8-17
Author(s):  
Suwarno . ◽  
Itsuo Goto ◽  
Hiroshi Masujima

Chemical properties of Pretreatment center slag (PTC-slag) were analyzed and compared to those of converter slag (C slag) and blast furnace slag (BF slag). PTC slag had a high EC value as well as citric acid soluble P and contained more Ca, Si, P, K, and Na but less Mg and Fe than C slag. Compared to BF slag, PTC slag contained more Fe, Ca, Mg, P, Mn, and Na but less Si, Al, and K. Although neutralizing value of PTC slag was lower than that of C slag, its ability to neutralize soilacidity was markedly higher. A pot experiment using Andisol from Tochigi Prefecture and komatsuna plant was carried outto evaluate PTC slag as liming material as well as P fertilizer. PTC slag, C slag, and dolomite were applied as liming materials and combined with super phosphate (SP). Addition of SP of 2.5 and 5.0% phosphate absorption coefficient (PAC) to PTC slag significantly improved the yield of komatsuna.This result, however, only apply for PTC slag adjusting soil pH to 6.5. Addit~ono f the same dosage of SP to PTC slag adjusting soil pH to 7.5 did not give significant effect. On the other hand, addition of SP of 2.5 and 5.0% PAC to C slag or dolomite significantly improved the yield for both C slag ordolomite adjusting. the soil pH to 6.5 and 7.5. Results of the experiment also indicated that P'TC slag and C slag significantly increased soil pH; exchangeable Ca, and Mg and improved available P, B, and Mn in Andisol. The magnitudes ofthese effects of the two slags, however, were difference. As compared to C slag and dolomite, PTC slag increased lower exchangeable Mg but higher available P. These results suggest that for acid soil amendment, PTC slag was better than dolomite and C slag due to the fact that this material supplymore P and B. Application of PTC slag as acid soil amendment will reduce the demand of P fertilizer, and even in high dosage can meet the P demand of komatsuna plant.


Sign in / Sign up

Export Citation Format

Share Document