scholarly journals Liquid biopsy: expanding the frontier of circulating biomarker discovery and validation in breast cancer

Author(s):  
Philip C. Miller ◽  
Dorraya El-Ashry ◽  
Marc E. Lippman
2020 ◽  
Vol 26 (42) ◽  
pp. 7655-7671 ◽  
Author(s):  
Jinfeng Zou ◽  
Edwin Wang

Background: Precision medicine puts forward customized healthcare for cancer patients. An important way to accomplish this task is to stratify patients into those who may respond to a treatment and those who may not. For this purpose, diagnostic and prognostic biomarkers have been pursued. Objective: This review focuses on novel approaches and concepts of exploring biomarker discovery under the circumstances that technologies are developed, and data are accumulated for precision medicine. Results: The traditional mechanism-driven functional biomarkers have the advantage of actionable insights, while data-driven computational biomarkers can fulfill more needs, especially with tremendous data on the molecules of different layers (e.g. genetic mutation, mRNA, protein etc.) which are accumulated based on a plenty of technologies. Besides, the technology-driven liquid biopsy biomarker is very promising to improve patients’ survival. The developments of biomarker discovery on these aspects are promoting the understanding of cancer, helping the stratification of patients and improving patients’ survival. Conclusion: Current developments on mechanisms-, data- and technology-driven biomarker discovery are achieving the aim of precision medicine and promoting the clinical application of biomarkers. Meanwhile, the complexity of cancer requires more effective biomarkers, which could be accomplished by a comprehensive integration of multiple types of biomarkers together with a deep understanding of cancer.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 147
Author(s):  
Leticia Díaz-Beltrán ◽  
Carmen González-Olmedo ◽  
Natalia Luque-Caro ◽  
Caridad Díaz ◽  
Ariadna Martín-Blázquez ◽  
...  

Purpose: The aim of this study is to identify differential metabolomic signatures in plasma samples of distinct subtypes of breast cancer patients that could be used in clinical practice as diagnostic biomarkers for these molecular phenotypes and to provide a more individualized and accurate therapeutic procedure. Methods: Untargeted LC-HRMS metabolomics approach in positive and negative electrospray ionization mode was used to analyze plasma samples from LA, LB, HER2+ and TN breast cancer patients and healthy controls in order to determine specific metabolomic profiles through univariate and multivariate statistical data analysis. Results: We tentatively identified altered metabolites displaying concentration variations among the four breast cancer molecular subtypes. We found a biomarker panel of 5 candidates in LA, 7 in LB, 5 in HER2 and 3 in TN that were able to discriminate each breast cancer subtype with a false discovery range corrected p-value < 0.05 and a fold-change cutoff value > 1.3. The model clinical value was evaluated with the AUROC, providing diagnostic capacities above 0.85. Conclusion: Our study identifies metabolic profiling differences in molecular phenotypes of breast cancer. This may represent a key step towards therapy improvement in personalized medicine and prioritization of tailored therapeutic intervention strategies.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Corinna Keup ◽  
Vinay Suryaprakash ◽  
Siegfried Hauch ◽  
Markus Storbeck ◽  
Peter Hahn ◽  
...  

Abstract Background Single liquid biopsy analytes (LBAs) have been utilized for therapy selection in metastatic breast cancer (MBC). We performed integrative statistical analyses to examine the clinical relevance of using multiple LBAs: matched circulating tumor cell (CTC) mRNA, CTC genomic DNA (gDNA), extracellular vesicle (EV) mRNA, and cell-free DNA (cfDNA). Methods Blood was drawn from 26 hormone receptor-positive, HER2-negative MBC patients. CTC mRNA and EV mRNA were analyzed using a multi-marker qPCR. Plasma from CTC-depleted blood was utilized for cfDNA isolation. gDNA from CTCs was isolated from mRNA-depleted CTC lysates. CTC gDNA and cfDNA were analyzed by targeted sequencing. Hierarchical clustering was performed within each analyte, and its results were combined into a score termed Evaluation of multiple Liquid biopsy analytes In Metastatic breast cancer patients All from one blood sample (ELIMA.score), which calculates the contribution of each analyte to the overall survival prediction. Singular value decomposition (SVD), mutual information calculation, k-means clustering, and graph-theoretic analysis were conducted to elucidate the dependence between individual analytes. Results A combination of two/three/four LBAs increased the prevalence of patients with actionable signals. Aggregating the results of hierarchical clustering of individual LBAs into the ELIMA.score resulted in a highly significant correlation with overall survival, thereby bolstering evidence for the additive value of using multiple LBAs. Computation of mutual information indicated that none of the LBAs is independent of the others, but the ability of a single LBA to describe the others is rather limited—only CTC gDNA could partially describe the other three LBAs. SVD revealed that the strongest singular vectors originate from all four LBAs, but a majority originated from CTC gDNA. After k-means clustering of patients based on parameters of all four LBAs, the graph-theoretic analysis revealed CTC ERBB2 variants only in patients belonging to one particular cluster. Conclusions The additional benefits of using all four LBAs were objectively demonstrated in this pilot study, which also indicated a relative dominance of CTC gDNA over the other LBAs. Consequently, a multi-parametric liquid biopsy approach deconvolutes the genomic and transcriptomic complexity and should be considered in clinical practice.


Author(s):  
Dan Li ◽  
Wenjia Lai ◽  
Di Fan ◽  
Qiaojun Fang

Breast cancer is the most common malignant disease in women worldwide. Early diagnosis and treatment can greatly improve the management of breast cancer. Liquid biopsies are becoming convenient detection methods for diagnosing and monitoring breast cancer due to their non-invasiveness and ability to provide real-time feedback. A range of liquid biopsy markers, including circulating tumor proteins, circulating tumor cells, and circulating tumor nucleic acids, have been implemented for breast cancer diagnosis and prognosis, with each having its own advantages and limitations. Circulating extracellular vesicles are messengers of intercellular communication that are packed with information from mother cells and are found in a wide variety of bodily fluids; thus, they are emerging as ideal candidates for liquid biopsy biomarkers. In this review, we summarize extracellular vesicle protein markers that can be potentially used for the early diagnosis and prognosis of breast cancer or determining its specific subtypes.


2012 ◽  
Vol 17 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Ning Qing Liu ◽  
René B. H. Braakman ◽  
Christoph Stingl ◽  
Theo M. Luider ◽  
John W. M. Martens ◽  
...  

2009 ◽  
Vol 13 (5) ◽  
pp. 565-571 ◽  
Author(s):  
Ramin Radpour ◽  
Zeinab Barekati ◽  
Corina Kohler ◽  
Wolfgang Holzgreve ◽  
Xiao Yan Zhong

Sign in / Sign up

Export Citation Format

Share Document