scholarly journals EVALUASI KINERJA INSTALASI PENGOLAHAN AIR PADA SISTEM PENYEDIAAN AIR MINUM (SPAM) DI DESA JEJANGKIT TIMUR, KALIMANTAN SELATA

2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Rony Riduan ◽  
Arif Dhiaksa

Desa Jejangkit Timur wilayahnya merupakan daerah Rawa. Di Desa Jejangkit Timur telah dibangun Sistem Penyediaan Air Minum (SPAM) secara swadaya yang mengolah air rawa menjadi air bersih. Penelitian ini bertujuan untuk mengevaluasi kinerja dan memberikan rekomendasi untuk meningkatkan kinerja Instalasi Pengolahan Air SPAM Jejangkit Timur. Sebelumnya telah dilakukan kajian Kinerja terhadap SPAM tersebut, namun sebatas terhadap 6 parameter kualitas air (TDS, pH, Fe, Mn, MPN Coliform, dan E. Coli) dan aspek non teknis. Evaluasi kinerja pada penelitian ini ditinjau pada aspek teknis terkait dengan kuantitas air dan kualitas air yang diproduksi Instalasi Pengolahan Air (IPA) dengan parameter lebih lengkap. Metode yang digunakan adalah melalui studi literatur, uji laboratorium, dan observasi lapangan. Dari hasil kajian, diperoleh informasi bahwa kinerja IPA SPAM ditinjau dari aspek teknis parameter kuantitas air adalah mampu memenuhi kebutuhan pokok air minum pelanggan.  Kinerja IPA SPAM pada parameter kualitas air fisika dan kimia yang diuji telah sesuai dengan standar, namun pada parameter biologi belum sesuai. Rekomendasi untuk meningkatkan kinerja IPA SPAM antara lain adalah pemasangan alat pengukur debit, pembangunan unit pengolahan air baku, peningkatan sistem input bahan tambah, penambahan tutup IPA, pembangunan unit pengolahan limbah, dan pemeriksaan kualitas air secara berkala, Kata kunci: Air minum, rawa, sistem penyediaan air minum.  The village of Jejangkit Timur is located in the swamp area. A drinking water supply system (SPAM) has been developed independently by processing swamp water into clean water. This research was conducted to analyze and provide recommendations to improve  the performance of Water Treatment Plant (WTP) SPAM in Jejangkit Timur Village. Previously, a study of the performance of the SPAM was conducted, but limited to 6 water quality parameters (TDS, pH, Fe, Mn, MPN Coliform, and E. Coli) and non-technical aspects. Study of the performance is reviewed from technical aspects related to water quantity and quality of water produced by WTP with more complete parameters. The method used is through literature studies, laboratory tests, and field observations. From the results of the study, information was obtained that the performance of the SPAM in terms of the technical aspects of the water quantity parameter was able to meet the basic needs of drinking water for all customers. The performance of the SPAM on the physical and chemical water quality parameters tested were in accordance with the Drinking Water Quality Standards, but the biological parameters were not appropriate. recommendations to improve the performance of WTP SPAM include the installation of discharge gauges on input and output of WTP, construction of raw water treatment unit, improvement of input additive material input systems, addition of IPA cover, construction of residual waste treatment plant unit, and continuous water quality check records. Keywords: A drinking water supply system, drinking water, swamps.

2018 ◽  
Vol 10 (2) ◽  
pp. 601-607
Author(s):  
Poonam Kundan ◽  
Deepika Slathia

In the present study, an attempt has been made to evaluate the water quality changes in River Tawi water treated at Sitlee water treatment plant, and supplied for drinking to Old Jammu City, Jammu, J&K, India. Water samples from the treated water unit of Sitlee water treatment plant and around ten houses from the distribution point (Old Jammu City) were analyzed monthly for various physicochemical parameters for a period of one year (February 2014 to January 2015). The study indicated deterioration of drinking water quality during its passage through the distribution network which has been attributed to the leakages and defects in the old pipe system supplying water to the Jammu city. Comparison of analyzed water quality parameters with the drinking water standards prescribed by World Health Organization (WHO) and Bureau of Indian Standards (BIS) indicated that parameters like DO (7.49-8.24mg/l), calcium(49.93-67.08mg/l), magnesium(16.14-25.21mg/l) and potassium(6.99-7.93mg/l) were almost nearing the desirable limits but were within the permissible limits and parameters like turbidity(3.5-8.17 NTU) and total hardness(78.87-120.50mg/l) were above the desirable limits in the water samples collected from the distribution point. The collected primary data for the thirteen water quality parameters has been used to calculate the Arithmetic Water Quality Index(WQI) which has shown monsoon increase with higher values at distribution point(65.65). One time microbial analysis (MPN/100ml) for total and faecal coliform has indicated presence of faecal coliform (<1/100ml) in water samples from eight households at distribution point which indicates contamination of water with human faecal matter during its passage through the distribution network. According to microbial standards laid down by Central Pollution Control Board (2008), water contaminated with faecal coliform is unfit for drinking without conventional treatment.


2020 ◽  
Vol 10 (2) ◽  
pp. 179-190
Author(s):  
Pardon Dandadzi ◽  
Zvikomborero Hoko ◽  
Tamuka Nhiwatiwa

Abstract This study assessed the quality of drinking water in the water supply system for the City of Harare (Zimbabwe) by investigating the occurrence of algae and other water quality parameters that affect its growth. At Morton Jaffray Water Treatment Works (MJWTWs), samples were collected from the raw water inlet and treated water outlet points. In the distribution system, samples were collected from selected sites and grouped into four zones (1, 2, 3 and 4). The algal taxonomic groups that were found in both raw and treated water comprised of Cyanophyceae, Chlorophyceae, Bacillariophyceae, Euglenophyceae and Dinophyceae. It was found out that Microcystis aeruginosa followed by Anabaena were the most abundant species in both raw water and in the distribution system. All measured water quality parameters were within the Standards Association of Zimbabwe and WHO guideline values except for chlorine which had an average residual chlorine concentration that was lower than the WHO recommended lower value of 0.2 mg/L in parts of Zone 2. Morton Jaffray Water Treatment Works does not completely remove algae, and there is a carry-over of algae into the distribution system. Boosting of chlorine is recommended for Zone 2 that had residual chlorine less than the WHO minimum threshold of 0.2 mg/L.


2019 ◽  
Vol 19 (7) ◽  
pp. 2098-2106
Author(s):  
Chelsea W. Neil ◽  
Yingying Zhao ◽  
Amy Zhao ◽  
Jill Neal ◽  
Maria Meyer ◽  
...  

Abstract Source water quality can significantly impact the efficacy of water treatment unit processes and the formation of chlorinated and brominated trihalomethanes (THMs). Current water treatment plant performance models may not accurately capture how source water quality variations, such as organic matter variability, can impact treatment unit processes. To investigate these impacts, a field study was conducted wherein water samples were collected along the treatment train for 72 hours during a storm event. Systematic sampling and detailed analyses of water quality parameters, including non-purgeable organic carbon (NPOC), UV absorbance, and THM concentrations, as well as chlorine spiking experiments, reveal how the THM formation potential changes in response to treatment unit processes. Results show that the NPOC remaining after treatment has an increased reactivity towards forming THMs, and that brominated THMs form more readily than chlorinated counterparts in a competitive reaction. Thus both the reactivity and quantity of THM precursors must be considered to maintain compliance with drinking water standards, a finding that should be incorporated into the development of model-assisted treatment operation and optimization. Advanced granular activated carbon (GAC) treatment beyond conventional coagulation–flocculation–sedimentation processes may also be necessary to remove the surge loading of THM-formation precursors during a storm event.


2012 ◽  
Vol 209-211 ◽  
pp. 1981-1985 ◽  
Author(s):  
Dong Sheng Wang ◽  
Xing Peng Zhou ◽  
Xiao Ming Mo ◽  
Yi Wang

During drinking water treatment, the chemical dosing processes, such as coagulant dosing process, ozone dosing process and chlorine dosing process are usually manually operated based on the operator knowledge and experience. However, due to the variations of water quality, water flow and process operational conditions and characteristics of large time-delay and nonlinear for the chemical dosing processes, it is difficult to adjust the chemical dosages in time by operators to keep the treated water quality stable, especially during the periods of rapid and frequent variations of water quality, water flow and process operational conditions. Thus, the improvements of control methods for the chemical dosing processes are essential to the operation of drinking water treatment plants. The Xiangcheng Water Treatment Plant in Suzhou, China has been utilizing the automatic control for chemical dosing processes since February 2012. Automatic controllers are designed respectively for the coagulant dosing process, ozone dosing process and chlorine dosing process. After the implementation of automatic control, operators are not necessary to keep constant attention. In addition, due to the improvements of control accuracies for the chemical dosing processes, the chemical dosages are reduced on the premise of ensuring safe water. Thus, both of the human resource costs and material costs can be saved. The practical control results demonstrate the efficiencies of proposed methods.


2000 ◽  
Vol 41 (10-11) ◽  
pp. 43-49 ◽  
Author(s):  
C-N. Chang ◽  
A. Chao ◽  
F-S. Lee ◽  
F-F. Zing

The objective of this study is to investigate how the molecular weight distribution of the organic substances affects their treatment efficiencies and the reduction of disinfection by-products (DBPs) in the various unit operations of a full-scale water treatment plant. The results indicate that the membrane with a smaller molecular weight cut-off is more effective for removing the organic substances and its associated water quality parameters from the raw water. For example, using the membrane with a molecular weight cut-off of 0.5 K (500 daltons), the removal efficiency of DOC from the raw water sample can be as high as 88%. Removal efficiencies of other water quality parameters such as UV254 absorbance, THMFP and AOXFP are generally between 65–69%. When undergoing the various unit operations in the conventional water treatment plant, most organic substances are removed in the coagulation process followed by sedimentation.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 343-353 ◽  
Author(s):  
M.J. Rosa ◽  
T. Cecílio ◽  
M. Ribau Teixeira ◽  
M. Viriato ◽  
R. Coelho ◽  
...  

A monitoring programme of hazardous substances was implemented in Alcantarilha's water treatment plant (Algarve, Portugal) since 2002, in addition to the legally established monitoring of standard physical, chemical and microbiological parameters. The objective of this programme was to ensure the drinking water quality regarding the waterborne disease organisms Cryptosporidium, Giardia, Salmonella, Pseudomonas aeruginosa, enterovirus and cyanobacteria, and the potentially harmful chemicals aluminium, cyanotoxins, and disinfection by-products (THM) and their precursors (TOC, DOC, UV254 nm, SUVA). Most of these parameters are new and still not regulated by the Portuguese and the European legislation. Data presented in this study refer to the period of August 2002 to October 2003. Results show that, despite the seasonal variations of the raw water quality, concentrations of the hazardous substances in the supplied drinking water were far below the legal standards and the WHO's and EPA guideline values, demonstrating the high removal efficiencies of this treatment plant.


2016 ◽  
Vol 17 (2) ◽  
pp. 597-605
Author(s):  
Zhiquan Liu ◽  
Yongpeng Xu ◽  
Xuewei Yang ◽  
Rui Huang ◽  
Qihao Zhou ◽  
...  

The overall purpose was to assess the feasibilities of recycling filter backwash water (FBWW) and combined filter backwash water (CFBWW) in a drinking water treatment plant in south China. The variations of regular water-quality indexes, metal indexes (Al, Mn and Cd), polyacrylamide and disinfection by-product indexes (trihalomethanes and their formation potentials) along with the treatment and the recycling processes were monitored. Results showed the recycling procedure caused increases of turbidity, total solids, ammonia nitrogen (NH3-N), permanganate index (CODMn), and dissolved organic carbon, Al, Mn and Cd concentrations in a mixture of raw water and FBWW or CFBWW compared to those in raw water. However, the recycling procedure had negligible impacts on the qualities of settled water and filtered water because most of the contaminants could be effectively removed by the conventional water treatment process. Although recycling did cause slight increases of NH3-N and CODMn levels in settled water and filtered water, the quality of finished water always conformed to Chinese standards for drinking water quality according to the surveyed indexes in the present study. Thus, it is appropriate to recycle waste streams in water-stressed areas if the source water is well managed and the water treatment processes are carefully conducted.


Sign in / Sign up

Export Citation Format

Share Document