scholarly journals Seasonal Incidence and Population Dynamics of Major Insect Pest Species of Paddy Collected in Light Trap in Relation to Weather Parameters

Author(s):  
S.K. Meena ◽  
A.K. Sharma ◽  
Rajesh Aarwe
Author(s):  
Yogendra Kumar Mishra ◽  
A.K. Sharma ◽  
A.K. Bhowmick ◽  
A.K. Saxena ◽  
Anil Kurmi

2020 ◽  
Vol 49 (4) ◽  
pp. 974-982
Author(s):  
Abigail L Cohen ◽  
Carrie H Wohleb ◽  
Silvia I Rondon ◽  
Kylie D Swisher Grimm ◽  
Isabel Cueva ◽  
...  

Abstract Understanding factors that affect the population dynamics of insect pest species is key for developing integrated pest management strategies in agroecosystems. Most insect pest populations are strongly regulated by abiotic factors such as temperature and precipitation, and assessing relationships between abiotic conditions and pest dynamics can aid decision-making. However, many pests are also managed with insecticides, which can confound relationships between abiotic factors and pest dynamics. Here we used data from a regional monitoring network in the Pacific Northwest United States to explore effects of abiotic factors on populations of an intensively managed potato pest, the potato psyllid (Bactericera cockerelli Šulc), which can vector Candidatus Liberibacter psyllaurus, a bacterial pathogen of potatoes. We assessed effects of temperature on psyllid populations, and show psyllid population growth followed predictable patterns within each year, but there was considerable variation across years in psyllid abundance. Examination of seasonal weather patterns suggested that in 2017, when psyllid populations were less abundant by several orders of magnitude than other years, a particularly long and cold period of winter weather may have harmed overwintering populations and limited population growth. The rate of degree-day accumulation over time, as well as total degree-day accumulation also affected trap catch abundance, likely by mediating the number of psyllid generations per season. Our findings indicate that growers can reliably infer the potential magnitude of risk from potato psyllids using monitoring data, date of first detection, seasonal weather patterns, and population size early in the growing season.


2020 ◽  
Vol 152 (3) ◽  
pp. 311-329 ◽  
Author(s):  
O. Olfert ◽  
R.M. Weiss ◽  
M. Vankosky ◽  
S. Hartley ◽  
J.F. Doane

AbstractThis paper describes a tri-trophic analysis of the ecological dynamics of a crop, an insect pest, and a natural enemy of the insect pest. Worldwide wheat (Triticum Linnaeus) (Poaceae) production in 2018–2019 was estimated at over 700 million metric tons in 2018–2019. Wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), a serious insect pest of wheat, is widely distributed in many parts of the world where wheat production occurs. Macroglenes penetrans (Kirby) (Hymenoptera: Pteromalidae), a parasitoid of S. mosellana, has successfully established in most wheat midge-infested areas. Mechanistic, or process-based, population models were used in this study to assess the interactive population dynamics of the three species, based on their respective life cycles and meteorological factors. The models were validated with survey data from multiple sites over numerous years (1991–2016). These simulation models helped to detail our understanding of the tri-trophic population dynamics and will help guide pest management decisions both prior to the growing season and until wheat heading, when wheat is no longer susceptible to S. mosellana. The associated models also help identify gaps in system knowledge, provide a foundation for evaluating future innovative management options, and evaluate the potential impact of a changing climate.


2020 ◽  
Vol 4 (1) ◽  
pp. 52-54
Author(s):  
Binod Banjara ◽  
Divash Pokhrel ◽  
Mohan Joshi ◽  
Usha Panta ◽  
Prashant Adhikari ◽  
...  

This study was conducted to monitor the population dynamics of major insect pest of agriculture ecosystem through light trap at the agriculture farm of GAASC ,Baitadi,during the winter of 2018.The main aim of this study was to determine the status of phototatics insects pest of the farm locality.. Light trap with a 100Watt filament bulb was installed at the site at college boundary, vegetable field and wheat field for trapping purpose. The observation was done every day and data was weekly record their status and occurrences. Overall nine insect species were observed and among them click beetle(Agriotes spp.) population was observed maximum compared to other species.Insects occurrence in vegetable field is dominated by click beetle followed by moths(Pieris canidia)and cabbage semi looper(Trichoplusia spp).The total 289 of 6 different species were found from vegetable fields. Trap installed on Agronomy farm contributes clickbeetle (Agriotes spp.)The most followed by Greenleaf hopper(Nephotettix spp)., Pink borer(Chilo partellus), wasp(Vespa spp.) and grasshopper(Hieroglyphus banian),total 152 of 5 different species were found until 15 week of monitoring. Similarly, trap installed in open field obtained total 176 out of which 68 were click beetle (Agriotes spp.),47 pink borer (Chilo partellus),40 moths (Pieris canidia) and 21 wasps (Vespa spp.).


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Hosam M. K. H. El-Gepaly

AbstractSorghum panicles offer a very rich microenvironment for many insect pest species and their natural enemies. Thirty arthropod species belonging to 28 families, pertaining to 9 orders were obtained from sorghum panicles planted in Sohag Governorate, Egypt, during the 3 successive seasons of 2016–2018. Out of these species were 14 pests, 16 predators, and 3 parasitoids. Lepidopteran and hemipteran pests were the most dominant species-infested sorghum-panicles during the mature stages of the panicles. Three microlepidopteran pests, the noctuid, Eublemma (Autoba) gayneri (Roth.); the pyralid, Cryptoblabes gnidiella Millière, and the cosmopterigid, Pyroderces simplex Walsingham, were recorded as major pest species infesting sorghum panicles in Sohag Governorate. The dipteran parasitoid species, Nemorilla floralis (Fallen) (Tachinidae) emerged from the pupae of the E. gayneri and C. gnidiella, while the hymenopteran parasitoid, Brachymeria aegyptiaca (Chalcididae) was obtained from the pupae of all the studied microlepidopteran pests. Spiders, coccinellids, and Orius spp. were the dominant predators collected form panicles. Post-harvest, larvae, and pupae of lepidopteran pests, especially P. simplex recorded (147, 96, and 79 larvae) and (47, 30, and 73 pupae)/10 panicles in 2016, 2017, and 2018 seasons, respectively.


2011 ◽  
Vol 87 (1) ◽  
pp. 34-51 ◽  
Author(s):  
Kyrre Kausrud ◽  
Bjørn Økland ◽  
Olav Skarpaas ◽  
Jean-Claude Grégoire ◽  
Nadir Erbilgin ◽  
...  

1990 ◽  
Vol 122 (6) ◽  
pp. 1271-1272 ◽  
Author(s):  
Hemendra Mulye ◽  
Roger Gordon

The eastern spruce budworm, Choristoneura fumiferana Clemens, is the most widely distributed and destructive forest insect pest in North America. Although much is known about the ecology, population dynamics, and impact of C. fumiferana on tree growth (Sanders et al. 1985), there is very little information available on the physiology of this forest pest. Physiological studies are crucial to the development of novel strategies for spruce budworm control.


2021 ◽  
Vol 25 (1) ◽  
pp. 1-22
Author(s):  
MP Ali ◽  
B Nessa ◽  
MT Khatun ◽  
MU Salam ◽  
MS Kabir

The damage caused by insect pest is the continual factor for the reduction of rice production. To date, 232 rice insect pest species are identified in Bangladesh and more than 100 species of insects are considered pests in rice production systems globally, but only about 20 - 33 species can cause significant economic loss. The major goal of this study is to explore all the possible ways of developed and proposed technologies for rice insect pests management and minimize economic losses. Insect pests cause 20% average yield loss in Asia where more than 90% of the world's rice is produced. In Bangladesh, outbreak of several insects such as rice hispa, leafroller, gallmidge, stem borers and brown planthopper (BPH) occurs as severe forms. Based on previous reports, yield loss can reach upto 62% in an outbreak situation due to hispa infestation. However, BPH can cause 44% yield loss in severe infestested field. To overcome the outbreaks in odd years and to keep the loss upto 5%, it is necessary to take some preventive measures such as planting of resistant or tolerant variety, stop insecticide spraying at early establishment of rice, establish early warning and forecasting system, avoid cultivation of susceptible variety and following crop rotation. Subsequent quick management options such as insecticidal treatment for specific insect pest should also be broadcasted through variety of information systems. Advanced genomic tool can be used to develop genetically modified insect and plants for sustainable pest management. In addition, to stipulate farmers not use insecticides at early crop stgae and minimize general annualized loss, some interventions including training rice farmers, regular field monitoring, digitalization in correct insect pests identification and their management (example; BRRI rice doctor mobile app), and demonstration in farmers field. Each technology itself solely or combination of two or more or all the packages can combat the insect pests, save natural enemies, harvest expected yield and contribute to safe food production in Bangladesh. Bangladesh Rice J. 25 (1) : 1-22, 2021


Sign in / Sign up

Export Citation Format

Share Document