scholarly journals Response of Summer Cowpea to Growth, Yield and Water Use Efficiency under different Irrigation and Nutrient Management in Lower Indo-Gangetic Plains

Author(s):  
Anirban Bhowmik ◽  
Subam Khawas ◽  
Gopal Dutta ◽  
Ratneswar Ray ◽  
Sanmoy Kr. Patra
Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 941
Author(s):  
Dharminder ◽  
Ram Kumar Singh ◽  
Vishal Kumar ◽  
Biswajit Pramanick ◽  
Walaa F. Alsanie ◽  
...  

Appropriate irrigation scheduling, along with proper nutrient management practice for direct seeded rice (DSR), are very much essential to attain higher water use efficiency. Huge amounts of municipal waste are been produced every year and these wastes are left untreated and have caused many environmental hazards. However, these wastes can be converted into potential manures for crop production when enhanced with microbial consortia. Concerning these, the current research was carried out to know the effect of compost of enriched municipal soil waste (E-MSWC) with suitable irrigation scheduling on growth, yield, microbial activity, and water use efficiency of the DSR grown under Indo-Gangetic plains during two consecutive rice seasons of 2017–2018 and 2018–2019 at Varanasi, India. From the experiment, it was found that E-MSWC applied at 10 Mg·ha−1 along with 75% recommended dose of fertilizer (RDF) was capable to improve growth, yield, soil microbes, and water use efficiency (WUE) of rice. Amongst different enriched MSWC, the consortia (blend of N-fixing, P and Zn-solubilizing bacteria and Trichoderma) enriched MSWC was found to be the most effective. Concerning, different irrigation scheduling, it was observed that 50 mm cumulative pan evaporation (CPE) based irrigation was the most suitable as compared to providing irrigation at 75 mm CPE. Comparing rice varieties used in the research, the rice variety Swarna has appeared as a better choice in terms of yield and WUE than the variety, Sahbhagi. Thus, it can be recommended that irrigation at 50 mm of CPE in conjunction with 75% RDF + E-MSWC (consortia) at 10 Mg·ha−1 could improve the water use efficiency of rice grown in Indo-Gangetic plains.


2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 111-128
Author(s):  
Víctor M. Olalde G. ◽  
J. Alberto Escalante E. ◽  
Angel A. Mastache L.

SUMMARYDuring the rainy season of 1998, a field experiment was established in Cocula, Guerrero (hot subhumid climate, Awo) and in Montecillo, México (semiarid climate, BS1), to evaluate the effect of nitrogen (0, 10 and 20 g m-2) and environment on phenology, yield and its components, water use efficiency (WUE), and crop evapotranspiration (ETc) and heat units (HU) accumulated during the growth cycle of sunflower (Helianthus annuus L.) cv. Victoria. The crop was planted on June 1 at a density of 7.5 pl m-2 in both climates. In Cocula, maximum and minimum temperatures were more extreme and rainfall was more intense, while soil was poor in total nitrogen, compared with Montecillo. Crop growth, yield and its components, and water use efficiency were affected significantly by the environment, nitrogen and the interaction environment * nitrogen. The crop cycle in the hot environment was 36 days shorter, with a greater accumulation of HU and ETc. Yield and its components and water use efficiency were significantly higher in Cocula. Nitrogen positively affected the evaluated variables. The interactive effect of environment * nitrogen was observed clearly, since in Cocula there was response to the application of nitrogen in most of the variables evaluated, while in Montecillo there was not.


Author(s):  
Diakalia Sogodogo ◽  
Béjamé Coulibaly ◽  
Bouya Traoré ◽  
Mme Dao Rokia Coulibaly ◽  
Ibrahima Dramé ◽  
...  

2016 ◽  
Vol 13 (2) ◽  
pp. 94-107 ◽  
Author(s):  
S Roy ◽  
M Barman ◽  
AM Puste ◽  
SK Gunri ◽  
K Jana

Field experiment was conducted at Instructional Farm, Jaguli (Mohanpur), Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India during two consecutive summer seasons of 2010-11, and 2011-12. The experiment was laid out in split-plot design having 4 levels of irrigation– rainfed without mulch, rainfed with mulch, irrigation at IW (depth of irrigation water) / CPE (Cumulative pan evaporation) ratios of 0.5 and 0.75 in main-plot and 4 inter cropping systems, sole maize, sole mungbean, maize + mungbean (1:1 row ratio) and maize + mungbean (3:2 row ratio) considered as sub-plot treatments replicated thrice. Results revealed that application of irrigation and intercropping systems markedly influenced the growth, yield and yield components (number of cobs/plant, number of grains/cob in case of maize and number of pods/plant and number of seeds/pod in case of mungbean) where the maximum value of these components were recorded with the application of irrigation at IW/CPE ratio 0.75 in sole crop. Maize-mungbean in 3:2 row ratio yielded higher than that of 1:1 intercropping system which might be due to less light interception and more competition for water and nutrition between both the crops. CU of water increased with the increasing levels of irrigation and the maximum value (17.75 kg ha-1 mm- 1) of WUE (water use efficiency) was observed with irrigation at IW: CPE ratio 0.75 under intercropping system of maize : mungbean in 3:2 row ratio followed by IW: CPE ratio 0.50. Among the sole crop, maximum WUE was with IW/CPE ratio 0.75 might be due to more consumption of water corresponding to production potential of maize, while, it was more under rainfed with mulch in mungbean. The relative crowding coefficient (RCC) also revealed both the intercropping systems were advantageous and the land equivalent ratio (LER) increased with the level of irrigation.Thus, maize grown in association with mungbean (3:2 row ratio) were found to be more profitable (B:C ratio of 2.58) with higher monetary advantage as compared to sole crop of maize (B:C ratio of 1.98) with the application of irrigation at IW: CPE ratio of 0.75 in new alluvial zone of West Bengal.SAARC J. Agri., 13(2): 94-107 (2015)


Sign in / Sign up

Export Citation Format

Share Document