scholarly journals Potential Application of Phage ɸ11 Lytic Proteins in Rapid Detection and Elimination of Staphylococcus aureus

Author(s):  
Amenti Rajkrishna Mondal

The increasing antibiotic resistance conferred by Staphylococcus aureus to multiple potential antibiotics has become a serious issue of concern and threat to mankind worldwide. In light of this, phage lytic proteins have been reported which show potential antimicrobial activity against pathogenic microorganisms that could be a promising alternative to antibiotics to eradicate the antibiotic resistant problems. This review discusses the various applications of S. aureus phage lytic proteins and the potentiality of aureophage phi 11 endolysin and virion associated peptidoglycan hydrolase (VAPGH) against staphylococcus strains. Phage Phi11 endolysin harbors two enzymatically active domain; cysteine and histidine-dependent amidohydrolase/peptidase (CHAP) and Amidase 2 at the N-terminus and a cell wall binding domain (CBD) SH3 5 at the C-terminus, while virion associated peptidoglycan hydrolase (VAPGH) has two catalytic domains, CHAP and Glucosaminidase (Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase) at its N-terminal and C-terminal, respectively.

2013 ◽  
Vol 69 (12) ◽  
pp. 2543-2554 ◽  
Author(s):  
Atul Kumar ◽  
Sanjiv Kumar ◽  
Dilip Kumar ◽  
Arpit Mishra ◽  
Rikeshwer P. Dewangan ◽  
...  

BacterialN-acetylmuramoyl-L-alanine amidases are cell-wall hydrolases that hydrolyze the bond betweenN-acetylmuramic acid and L-alanine in cell-wall glycopeptides. Rv3717 ofMycobacterium tuberculosishas been identified as a unique autolysin that lacks a cell-wall-binding domain (CBD) and its structure has been determined to 1.7 Å resolution by the Pt-SAD phasing method. Rv3717 possesses an α/β-fold and is a zinc-dependent hydrolase. The structure reveals a short flexible hairpin turn that partially occludes the active site and may be involved in autoregulation. This type of autoregulation of activity of PG hydrolases has been observed inBartonella henselaeamidase (AmiB) and may be a general mechanism used by some of the redundant amidases to regulate cell-wall hydrolase activity in bacteria. Rv3717 utilizes its net positive charge for substrate binding and exhibits activity towards a broad spectrum of substrate cell walls. The enzymatic activity of Rv3717 was confirmed by isolation and identification of its enzymatic products by LC/MS. These studies indicate that Rv3717, anN-acetylmuramoyl-L-alanine amidase fromM. tuberculosis, represents a new family of lytic amidases that do not have a separate CBD and are regulated conformationally.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 963 ◽  
Author(s):  
Hanbeen Kim ◽  
Hyo Gun Lee ◽  
Inhyuk Kwon ◽  
Jakyeom Seo

Streptococcus bovis (S. bovis) is one of the critical initiators of acute acidosis in ruminants. Therefore, we aimed to develop and characterize the endolysin LyJH307, which can lyse ruminal S. bovis. We tested the bactericidal activity of recombinant LyJH307 against S. bovis JB1 under a range of pH, temperature, NaCl, and metal ion concentrations. In silico analyses showed that LyJH307 has a modular design with a distinct, enzymatically active domain of the NLPC/P60 superfamily at the N-terminal and a cell wall binding domain of the Zoocin A target recognition domain (Zoocin A_TRD) superfamily at the C-terminal. The lytic activity of LyJH307 against S. bovis JB1 was the highest at pH 5.5, and relatively higher under acidic, than under alkaline conditions. LyJH307 activity was also the highest at 39 °C, but was maintained between 25°C and 55°C. LyJH307 bactericidal action was retained under 0-500 mM NaCl. While the activity of LyJH307 significantly decreased on treatment with ethylenediaminetetraacetic acid (EDTA), it was only restored with supplementation of 10 mM Ca2+. Analyses of antimicrobial spectra showed that LyJH307 lysed Lancefield groups D (S. bovis group and Enterococcus faecalis) and H (S. sanguinis) bacteria. Thus, LyJH307 might help to prevent acute ruminal acidosis.


mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Sara B. Snell ◽  
Ann Lindley Gill ◽  
Constantine G. Haidaris ◽  
Thomas H. Foster ◽  
Timothy M. Baran ◽  
...  

ABSTRACT Staphylococcus aureus is an opportunistic pathogen with a clinical spectrum ranging from asymptomatic skin colonization to invasive infections. While traditional antibiotic therapies can be effective against S. aureus, the increasing prevalence of antibiotic-resistant strains results in treatment failures and high mortality rates. Photodynamic inactivation (PDI) is an innovative and promising alternative to antibiotics. While progress has been made in our understanding of the bacterial response to PDI, major gaps remain in our knowledge of PDI tolerance, the global cellular response, and adaptive genomic mutations acquired as a result of PDI. To address these gaps, S. aureus HG003 and isogenic mutants with mutations in agr, mutS, mutL, and mutY exposed to single or multiple doses of PDI were assessed for survival and tolerance and examined by global transcriptome and genome analyses to identify regulatory and genetic adaptations that contribute to tolerance. Pathways in inorganic ion transport, oxidative response, DNA replication recombination and repair, and cell wall and membrane biogenesis were identified in a global cellular response to PDI. Tolerance to PDI was associated with superoxide dismutase and the S. aureus global methylhydroquinone (MHQ)-quinone transcriptome network. Genome analysis of PDI-tolerant HG003 identified a nonsynonymous mutation in the quinone binding domain of the transcriptional repressor QsrR, which mediates quinone sensing and oxidant response. Acquisition of a heritable QsrR mutation through repeated PDI treatment demonstrates selective adaption of S. aureus to PDI. PDI tolerance of a qsrR gene deletion in HG003 confirmed that QsrR regulates the S. aureus response to PDI. IMPORTANCE Staphylococcus aureus can cause disease at most body sites, with illness ranging from asymptomatic infection to death. The increasing prevalence of antibiotic-resistant strains results in treatment failures and high mortality rates. S. aureus acquires resistance to antibiotics through multiple mechanisms, often by genetic variation that alters antimicrobial targets. Photodynamic inactivation (PDI), which employs a combination of a nontoxic dye and low-intensity visible light, is a promising alternative to antibiotics that effectively eradicates S. aureus in human infections when antibiotics are no longer effective. In this study, we demonstrate that repeated exposure to PDI results in resistance of S. aureus to further PDI treatment and identify the underlying bacterial mechanisms that contribute to resistance. This work supports further analysis of these mechanisms and refinement of this novel technology as an adjunctive treatment for S. aureus infections.


2018 ◽  
Vol 85 (5) ◽  
Author(s):  
Minsuk Kong ◽  
Hongjun Na ◽  
Nam-Chul Ha ◽  
Sangryeol Ryu

ABSTRACTTo control the spore-forming human pathogenBacillus cereus, we isolated and characterized a novel endolysin, LysPBC2, from a newly isolatedB. cereusphage, PBC2. Compared to the narrow host range of phage PBC2, LysPBC2 showed very broad lytic activity against allBacillus,Listeria, andClostridiumspecies tested. In addition to a catalytic domain and a cell wall binding domain, LysPBC2 has a spore binding domain (SBD) partially overlapping its catalytic domain, which specifically binds toB. cereusspores but not to vegetative cells ofB. cereus. Both immunogold electron microscopy and a binding assay indicated that the SBD binds the external region of the spore cortex layer. Several amino acid residues required for catalytic or spore binding activity of LysPBC2 were determined by mutagenesis studies. Interestingly, LysPBC2 derivatives with impaired spore binding activity showed an increased lytic activity against vegetative cells ofB. cereuscompared with that of wild-type LysPBC2. Further biochemical studies revealed that these LysPBC2 derivatives have lower thermal stability, suggesting a stabilizing role of SBD in LysPBC2 structure.IMPORTANCEBacteriophages produce highly evolved lytic enzymes, called endolysins, to lyse peptidoglycan and release their progeny from bacterial cells. Due to their potent lytic activity and specificity, the use of endolysins has gained increasing attention as a natural alternative to antibiotics. Since most endolysins from Gram-positive-bacterium-infecting phages have a modular structure, understanding the function of each domain is crucial to make effective endolysin-based therapeutics. Here, we report the functional and biochemical characterization of aBacillus cereusphage endolysin, LysPBC2, which has an unusual spore binding domain and a cell wall binding domain. A single point mutation in the spore binding domain greatly enhanced the lytic activity of endolysin at the cost of reduced thermostability. This work contributes to the understanding of the role of each domain in LysPBC2 and will provide insight for the rational design of efficient antimicrobials or diagnostic tools for controllingB. cereus.


2011 ◽  
Vol 321 (2) ◽  
pp. 83-91 ◽  
Author(s):  
Martina Gerova ◽  
Nora Halgasova ◽  
Jana Ugorcakova ◽  
Gabriela Bukovska

2006 ◽  
Vol 72 (4) ◽  
pp. 2988-2996 ◽  
Author(s):  
David M. Donovan ◽  
Shengli Dong ◽  
Wes Garrett ◽  
Geneviève M. Rousseau ◽  
Sylvain Moineau ◽  
...  

ABSTRACT The increased incidence of bacterial antibiotic resistance has led to a renewed search for novel antimicrobials. Avoiding the use of broad-range antimicrobials through the use of specific peptidoglycan hydrolases (endolysins) might reduce the incidence of antibiotic-resistant pathogens worldwide. Staphylococcus aureus and Streptococcus agalactiae are human pathogens and also cause mastitis in dairy cattle. The ultimate goal of this work is to create transgenic cattle that are resistant to mastitis through the expression of an antimicrobial protein(s) in their milk. Toward this end, two novel antimicrobials were produced. The (i) full-length and (ii) 182-amino-acid, C-terminally truncated S. agalactiae bacteriophage B30 endolysins were fused to the mature lysostaphin protein of Staphylococcus simulans. Both fusions display lytic specificity for streptococcal pathogens and S. aureus. The full lytic ability of the truncated B30 protein also suggests that the SH3b domain at the C terminus is dispensable. The fusions are active in a milk-like environment. They are also active against some lactic acid bacteria used to make cheese and yogurt, but their lytic activity is destroyed by pasteurization (63°C for 30 min). Immunohistochemical studies indicated that the fusion proteins can be expressed in cultured mammalian cells with no obvious deleterious effects on the cells, making it a strong candidate for use in future transgenic mice and cattle. Since the fusion peptidoglycan hydrolase also kills multiple human pathogens, it also may prove useful as a highly selective, multipathogen-targeting antimicrobial agent that could potentially reduce the use of broad-range antibiotics in fighting clinical infections.


2020 ◽  
Vol 8 (5) ◽  
pp. 724 ◽  
Author(s):  
Yoonjee Chang

Endolysins, bacteriophage-encoded enzymes, have emerged as antibacterial agents that can be actively applied in food processing systems as food preservatives to control pathogens and ultimately enhance food safety. Endolysins break down bacterial peptidoglycan structures at the terminal step of the phage reproduction cycle to enable phage progeny release. In particular, endolysin treatment is a novel strategy for controlling antibiotic-resistant bacteria, which are a severe and increasingly frequent problem in the food industry. In addition, endolysins can eliminate biofilms on the surfaces of utensils. Furthermore, the cell wall-binding domain of endolysins can be used as a tool for rapidly detecting pathogens. Research to extend the use of endolysins toward Gram-negative bacteria is now being extensively conducted. This review summarizes the trends in endolysin research to date and discusses the future applications of these enzymes as novel food preservation tools in the field of food safety.


2018 ◽  
Vol 10 (27) ◽  
pp. 3332-3339 ◽  
Author(s):  
Panida Thanyasrisung ◽  
Aemvika Vittayaprasit ◽  
Oranart Matangkasombut ◽  
Motoyuki Sugai ◽  
Piyaporn Na Nongkai ◽  
...  

Colorimetric assay based on magnetic separation/selective filtration can differentiate salivary mutans streptococci levels relevant for dental caries risk assessment.


Sign in / Sign up

Export Citation Format

Share Document