scholarly journals Influence of fungicide and fertilizer amendments on mycorrhizal association in Quiona (Chenopodium quinoa. Willd.)

Author(s):  
Prashan thisandepogu

Effect of soil factor like alkaline cultivated versus saline non-cultivated soil, fertilization with organic (PYM) and inorganic (DAP) manure and addition of fungicides (Bavistin + Thiram, Difolatan and Thiram) on indigenous VA mycorrhizal fungi was examined in Quinoa (Chenopodium quinoa Willd). DAP in combination with Bavistin + Thiram enhanced the spore population ad decreased mycorrhizal formation. FYM in combination with Difolatan enhanced both. Adverse effects of fungicides were nullified by fertilizers. Activity of Glomus was enhanced in the presence of DAP and Gigaspora was favoured by FYM.

2021 ◽  
Author(s):  
Robert Reuter ◽  
Olga Ferlian ◽  
Mika Tarkka ◽  
Nico Eisenhauer ◽  
Karin Pritsch ◽  
...  

Abstract Mycorrhizal fungi play an important role for the nitrogen (N) supply of trees. The influence of different mycorrhizal types on N acquisition in tree-tree interactions is, however, not well understood, particularly with regard to the competition for growth-limiting N. We studied the effect of competition between temperate forest tree species on their inorganic and organic N acquisition in relation to their mycorrhizal type (i.e., arbuscular mycorrhiza or ectomycorrhiza). In a field experiment, we quantified net N uptake capacity from inorganic and organic N sources using 15N/13C stable isotopes for arbuscular mycorrhizal tree species (i.e., Acer pseudoplatanus L., Fraxinus excelsior L., and Prunus avium L.) as well as ectomycorrhizal tree species (i.e., Carpinus betulus L., Fagus sylvatica L., and Tilia platyphyllos Scop.). All species were grown in intra- and interspecific competition (i.e., monoculture or mixture). Our results showed that N sources were not used complementarily depending on a species´ mycorrhizal association, but their uptake rather depended on the competitor indicating species-specific effects. Generally, ammonium was preferred over glutamine and glutamine over nitrate. In conclusion, our findings suggest that inorganic and organic N acquisition of the studied temperate tree species is less regulated by mycorrhizal association, but rather by the availability of specific N sources in the soil as well as the competitive environment of different tree species.


1981 ◽  
Vol 59 (6) ◽  
pp. 1056-1060 ◽  
Author(s):  
Sharon L. Rose

Endemic plants of the Sonoran Desert of Baja California were sampled for mycorrhizal associations. Eight of the 10 plant species examined were colonized by vesicular–arbuscular (VA) mycorrhizal fungi. Soil sievings revealed chlamydospores of three VA mycorrhizal Glomus spp.; G. microcarpus, G. fasciculatus, and G. macrocarpus. At the time of sampling, the populations of VA fungal spores in the soil were low, with one to five chlamydospores per 100 g soil sample.


2021 ◽  
Author(s):  
Xuhui Zhou ◽  
Lingyan Zhou ◽  
Yanghui He ◽  
Yuling Fu ◽  
Zhenggang Du ◽  
...  

Abstract Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Recent studies suggest that climate warming can differentially affect root and shoot biomass, and subsequently alter root: shoot ratio. However, warming effects on root: shoot ratio and their underlying drivers at a global scale remain unclear. Using a global synthesis of >300 studies, we here show that warming significantly increases biomass allocation to roots (by 13.1%), and two factors drive this response: mean annual precipitation of the site, and the type of mycorrhizal fungi associated with a plant. Warming-induced allocation to roots is greater in relatively drier habitats compared to shoots (by 15.1%), but lower in wetter sites (by 4.9%), especially for plants associated with arbuscular mycorrhizal fungi compared to ectomycorrhizal fungi. Root-biomass responses to warming predominantly determine the biomass allocation in terrestrial plants suggesting that warming can reinforce the importance of belowground resource uptake. Our study highlights that the wetness or dryness of a site and plants’ mycorrhizal associations strongly regulate terrestrial carbon cycle by altering biomass allocation strategies in a warmer world.


VA Mycorrhiza ◽  
2018 ◽  
pp. 35-55 ◽  
Author(s):  
Barbara A. Daniels Hetrick

1990 ◽  
Vol 145 (1) ◽  
pp. 61-63
Author(s):  
M.S. Byra Reddy ◽  
D.J. Bagyaraj

Soil Research ◽  
1985 ◽  
Vol 23 (2) ◽  
pp. 253 ◽  
Author(s):  
LK Abbott ◽  
AD Robson

Two species of vesicular-arbuscular (VA) mycorrhizal fungi differed in their ability to infect subterranean clover roots when soil pH was changed by liming. In a glasshouse experiment, Glomus fasciculatum infected extensively at each of four levels of soil pH (range 5.3-7.5). Glomus sp. (WUM 16) only infected extensively at the highest pH level. Liming the soil depressed plant growth, but this effect was almost entirely overcome by inoculation with G. fasciculatum. In the second experiment, Glomus sp. (WUM 16) failed to spread from existing infection within roots of subterranean clover when soil pH was 5.3 or lower. The lack of spread of infection was associated with an inability of hyphae of this fungus to grow in the soil used unless it was limed to give a pH at least greater than 5.3.


1994 ◽  
Vol 126 (4) ◽  
pp. 691-693 ◽  
Author(s):  
E. I. NEWMAN ◽  
C. L. N. DEVOY ◽  
N. J. EASEN ◽  
K. J. FOWLES

Sign in / Sign up

Export Citation Format

Share Document