scholarly journals Mountain Bike Rear Suspension Design: Utilizing a Magnetorheological Damper for Active Vibration Isolation and Performance

2020 ◽  
Vol 25 (4) ◽  
pp. 504-512
Author(s):  
Robert Pierce ◽  
Sudhir Kaul ◽  
Jacob Friesen ◽  
Thomas Morgan

This paper presents experimental results from the development of a rear suspension system that has been designed for a mountain bike. A magnetorheological (MR) damper is used to balance the need of ride comfort with performance characteristics such as handling and pedaling efficiency by using active control. A preliminary seven degree-of-freedom mathematical model has also been developed for the suspension system. Two control algorithms have been tested in this study: on/off control and proportional control. The rear suspension system has been integrated into an existing bike frame and tested on a shaker table as well as a mountain trail. Shaker table testing demonstrates the effectiveness of the damper. Trail testing indicates that the MR damper-based shock absorber can be used to implement different control algorithms. Test results indicate that the control algorithm can be further investigated to accommodate rider preferences and desired performance characteristics.

Author(s):  
R. Scott Pierce ◽  
Caleb Whitener ◽  
Sudhir Kaul

This paper presents experimental results from the testing of a semi-active damping system in an off-road bicycle (bike). Magnetorheological dampers are being increasingly used in automotive applications to enhance damping capability of a suspension system or to mitigate the trade-off between ride comfort and handling. A magnetorheological (MR) damper requires a relatively low amount of energy to control damping characteristics, and behaves as a passive damper in the absence of any power input. This study investigates the use of a semi-active magnetorheological damper for the rear suspension of a mountain bike. The performance of this damper has been compared to the current shock absorber on the bike. All testing has been performed on a shaker table and the performance of the damper has been evaluated by comparing the input acceleration at the hub of the rear wheel to the acceleration at the seat of the bike. The main aim of this study is to investigate the viability of using an MR damper in a mountain bike suspension system. Test results indicate that the performance of the semi-active MR damper is comparable to the current shock absorber. Furthermore, the MR damper lends itself to hands-off control that will be investigated in a future study. Therefore, it can be concluded from preliminary testing that an MR damper can be used in a mountain bike to effectively control damping.


2014 ◽  
Vol 699 ◽  
pp. 283-288
Author(s):  
Mohamad Hafiz Harun ◽  
Fauzi Ahmad ◽  
Mohd Razali Md Yunos ◽  
Ahmad Kamal Mat Yamin

Passenger ride comfort is an important factor in railway vehicle services. However, passenger ride comfort is sometimes affected by the vibrations resulting from the track irregularities. It will be critical when the track is exposed to prolonged sun’s heat and lack of track maintenance. This means that the optimization of passive suspension parameters alone could not cope with these cases. Semi-active suspension system for railway vehicles has been developed as a way to solve these problems. The technology of semi-active suspension is widely used especially in the railway vehicle application. Magnetorheological (MR) damper is one of the applications of the concept of semi-active suspension. However, there are a variety of criteria for MR dampers based on usage. To meet the requirements of railway vehicle suspension system, a MR damper have been developed. The criteria for the MR damper are obtained experimentally. Then, the model for the MR damper is developed using Interpolated Sixth Order Polynomial and validated by experimental. The MR damper model has shown improvement, especially in the railway vehicle dynamics performance.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199952
Author(s):  
Birhan Abebaw Negash ◽  
Wonhee You ◽  
Jinho Lee ◽  
Changyoung Lee ◽  
Kwansup Lee

A suspension system is one of the integral parts of a hyperloop capsule train, which is used to isolate the car-body from bogie vibration to provide a safer and comfortable service. A semi-active suspension system is one of the best candidates for its advantageous features. The performance of a semi-active suspension system relies greatly on the control strategy applied. In this article, Skyhook (SH) and mixed Skyhook-Acceleration Driven Damper (SH-ADD) controlling algorithms are adopted for a nonlinear quarter-car model of a capsule with semi-active magnetorheological damper. The nonlinear vertical dynamic response and performance of the proposed control algorithms are evaluated under MATLAB Simulink environment and hardware-in-loop-system (HILS) environment. The SH controlled semi-active suspension system performance is found to be better at the first resonance frequency and worse at the second resonance frequency than the passive MR damper, but the mixed SH-ADD controlled semi-active suspension system performs better than the passive at all frequency domains. Taking the root-mean-square (RMS) value of sprung mass vertical displacement as an evaluation criterion, the response is reduced by 58.49% with mixed SH-ADD controller and by 54.49% with the SH controller compared to the passive MR damper suspension.


Author(s):  
D.V.A.R. Sastry ◽  
K.V. Ramana ◽  
N.M. Rao ◽  
P. Pruthvi ◽  
D.U.V. Santhosh

Magnetorheological (MR) dampers are evolving as one of the most promising devices for semi-active vibration control of various dynamic systems. In this paper, the suspension system of a car using MR damper is analysed for 2DOF quarter car and 4DOF half car models and then compared with corresponding suspension system using passive damper for ride comfort and handling. Magnetorheological damper is fabricated using a MR fluid of Carbonyl iron powder and Silicone oil added with additive. Experiments are conducted to establish the behaviour of the MR damper and are used to validate Spencer model for MR damper. Further, using the validated Spencer model of MR damper, the quarter car and half car models of Vehicle Suspension system are simulated by implementing a semi-active suspension system for analysing the resulting displacement and acceleration in the car body. The ride comfort and vehicle handling performance of each specific vehicle model with passive suspension system are compared with corresponding semi-active suspension system. The simulation and analysis are carried out using MATLAB/SIMULINK.


2018 ◽  
Vol 8 (4) ◽  
pp. 3218-3222
Author(s):  
R. N. Yerrawar ◽  
R. R. Arakerimath

Magnetorheological (MR) strut is among the leading advanced applications of semi-active suspension systems. The damping force of MR damper is controlled by varying the viscosity of MR fluid. In this work, the viscosity of MR damper varies by changing the current from 0.5A to 0.7A. The design of experiments is taken into account in concert with the product/process development as one completely advanced tool. The parameters used for ride comfort optimization are sprung mass, spring stiffness, tire pressure, current, and cylinder material with two levels of each. Taguchi orthogonal array method is used to select the best results by parameter optimization with a minimum number of test runs. In this paper, from Taguchi L16 array and S/N ratio analysis, it is observed that the cylinder material with Al and CS for damper cylinder is a key parameter for performance measure of semi-active suspension system. From regression analysis, a linear mathematical model is developed for Al and CS as cylinder materials. The interaction of cylinder materials with all four parameters is plotted. The methodology implemented for measurement of acceleration as a ride comfort is as per IS 2631-1997. The more economical model of magnetorheological damper will motivate Indian auto industry to broader applications.


Author(s):  
H. Metered ◽  
P. Bonello ◽  
S. O. Oyadiji

Seat suspension system is critical to the ride comfort experience of a vehicle’s driver and passengers. The use of a magnetorheological (MR) damper in a seat suspension system has been shown to offer significant benefits in this regard. Most research on seat MR dampers has applied active control strategies to command the MR damper, which is an inherently semi-active device. This paper introduces a more suitable semi-active control strategy for an MR damper used in a seat suspension, enabling more effective control. The proposed control system comprises a system controller that computes the desired damping force using a sliding mode control algorithm, and a neural-based damper controller that provides a direct estimation of the command voltage that is required to track the desired damping force. The seat suspension system is approximated by base-excited single degree of freedom system. The proposed semi-active seat suspension is compared to a passive seat suspension for prescribed base displacements. These inputs are representative of the vibration of the sprung mass of a passive or semi-active quarter-vehicle suspension under bump or random-profile road disturbance. Control performance criteria such as seat travel distance and seat acceleration are evaluated in time and frequency domains, in order to quantify the effectiveness of proposed semi-active control system. The simulated results reveal that the use of semi-active control in the seat suspension provides a significant improvement in ride comfort.


2021 ◽  
Vol 15 (1) ◽  
pp. 7648-7661
Author(s):  
M. F. Yakhni ◽  
M. A. El-Gohary ◽  
M. N. Ali

Suspension system design is an important challenging duty that facing car manufacturers, so the challenge has become to design the best system in terms of providing ride comfort and handling ability under all driving situations. The goal of this paper is to provide assistance in enhancing the effectiveness of the suspension system. A full car model with eight degrees of freedom (DOF) was developed using MATLAB/Simulink. Validation of the Simulink model was obtained. The model was assumed to travel over a speed hump that has a half sine wave shape and amplitude that changing from 0.01 to 0.2 m. The vehicle was moving with variable speeds from 20 to 120 km/h. Magneto Rheological (MR) damper was implanted to the model to study its effect on ride comfort. Artificial Neural Network (ANN) was used to find the optimum voltage value applied to the MR damper, to skip the hump at least displacement. This network uses road profile and the vehicle speed as inputs. A comparison of the results for passive suspension system and model with MR damper, are illustrated. Results show that the MR damper give significant improvements of the vehicle ride performance over the passive suspension system.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Aly Mousaad Aly

This paper presents vibration control of a building model under earthquake loads. A magnetorheological (MR) damper is placed in the building between the first floor and ground for seismic response reduction. A new control algorithm to command the MR damper is proposed. The approach is inspired by a quasi-bang-bang controller; however, the proposed technique gives weights to control commands in a fashion that is similar to a fuzzy logic controller. Several control algorithms including decentralized bang-bang controller, Lyapunov controller, modulated homogeneous friction controller, maximum energy dissipation controller, and clipped-optimal controller are used for comparison. The new controller achieved the best reduction in maximum interstory drifts and maximum absolute accelerations over all the control algorithms presented. This reveals that the proposed controller with the MR damper is promising and may provide the best protection to the building and its contents.


Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881119 ◽  
Author(s):  
Zbyněk Strecker ◽  
Jakub Roupec ◽  
Ivan Mazůrek ◽  
Ondřej Macháček ◽  
Michal Kubík

A three-parameter suspension system is often used for vibration isolation of sensitive devices especially in a space industry. This article describes the three-parameter suspension system with magnetorheological valve controlled by Skyhook algorithm. Simulations of such systems showed promising results. They, however, showed that the suspension performance is strongly influenced by magnetorheological valve response time. Results from simulations proved that the semiactive control of such system with response time of magnetorheological damper up to 4 ms outperforms any passive setting. The simulations were verified by an experiment on suspension system with magnetorheological valve with response time between 3.5 and 4.1 ms controlled by a Skyhook algorithm. Although the control algorithm was slightly modified in order to prevent instabilities of control loop caused by signal noise, the results from the experiment showed the same trends like the simulations.


Sign in / Sign up

Export Citation Format

Share Document