scholarly journals Influence of response time of magnetorheological valve in Skyhook controlled three-parameter damping system

2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881119 ◽  
Author(s):  
Zbyněk Strecker ◽  
Jakub Roupec ◽  
Ivan Mazůrek ◽  
Ondřej Macháček ◽  
Michal Kubík

A three-parameter suspension system is often used for vibration isolation of sensitive devices especially in a space industry. This article describes the three-parameter suspension system with magnetorheological valve controlled by Skyhook algorithm. Simulations of such systems showed promising results. They, however, showed that the suspension performance is strongly influenced by magnetorheological valve response time. Results from simulations proved that the semiactive control of such system with response time of magnetorheological damper up to 4 ms outperforms any passive setting. The simulations were verified by an experiment on suspension system with magnetorheological valve with response time between 3.5 and 4.1 ms controlled by a Skyhook algorithm. Although the control algorithm was slightly modified in order to prevent instabilities of control loop caused by signal noise, the results from the experiment showed the same trends like the simulations.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yanling Liu ◽  
Wentao Zhao ◽  
Xiaofeng Yang ◽  
Long Chen ◽  
Yujie Shen

As a two-terminal mechanical element, the inerter has been successfully applied in various mechanical fields, such as automotive engineering and civil engineering, for passive control and semiactive control. In this paper, a hydraulic electric inerter is considered an active device to suppress the vibration of a vehicle suspension system. The components and working principle of the hydraulic electric inerter are first introduced. On the basis of a force test of the hydraulic electric inerter, nonlinear factors such as friction, the damping force, and the elastic effect are analyzed, and parameter identification methods are adopted to identify the detailed parameters. A dynamic model of the vehicle suspension system employing a nonlinear hydraulic electric inerter is established, and the predictive controller is designed to further improve the vibration isolation performance of the suspension system. Numerical simulations show that the performance of the vehicle ISD (inerter-spring-damper) suspension system is significantly improved compared to the passive suspension. Finally, bench tests are carried out, and the advantages of vehicle ISD suspension are demonstrated. The RMS (root-mean-square) value of the vehicle body acceleration and the RMS value of the suspension working space are reduced by 16.1% and 8.9%, respectively.


Author(s):  
Xubin Song ◽  
Mehdi Ahmadian ◽  
Steve Southward

In general, a vehicle suspension system can be characterized as a nonlinear dynamic system that is subjected to unknown vibration sources, dependent on road roughness and vehicle speed. In this paper, we will present a nonlinear-model-based adaptive semiactive control algorithm developed for nonlinear systems exposed to broadband non-stationary random vibration sources that are assumed to be unknown or not measurable. If there exist unknown and/or varying parameters of the dynamic system such as mass and stiffness, then the adaptive algorithm can include a recursive least square (RLS) method for on-line system identification. Since the adaptive algorithm is developed for semiactive systems, stability is guaranteed based on the fact that the system is energy conservative. The convergence of the adaptive system, however is not guaranteed, and is investigated through a numerical approach for a specific case. The simulation results for a magneto-rheological seat suspension system with the suggested adaptive control are presented. The results are compared with low-damping and high-damping cases, as well æ other configurations of skyhook control, in order to show the extent of the procurement that can be expected with the suggested adaptive skyhook control provides a better broadbandk performance for the suspension, as compared to the other damping configurations that are included here.


2020 ◽  
Vol 25 (4) ◽  
pp. 504-512
Author(s):  
Robert Pierce ◽  
Sudhir Kaul ◽  
Jacob Friesen ◽  
Thomas Morgan

This paper presents experimental results from the development of a rear suspension system that has been designed for a mountain bike. A magnetorheological (MR) damper is used to balance the need of ride comfort with performance characteristics such as handling and pedaling efficiency by using active control. A preliminary seven degree-of-freedom mathematical model has also been developed for the suspension system. Two control algorithms have been tested in this study: on/off control and proportional control. The rear suspension system has been integrated into an existing bike frame and tested on a shaker table as well as a mountain trail. Shaker table testing demonstrates the effectiveness of the damper. Trail testing indicates that the MR damper-based shock absorber can be used to implement different control algorithms. Test results indicate that the control algorithm can be further investigated to accommodate rider preferences and desired performance characteristics.


2013 ◽  
Vol 482 ◽  
pp. 150-154 ◽  
Author(s):  
Zhi Zhao Peng ◽  
Jin Qiu Zhang ◽  
Lei Zhang ◽  
Da Shan Huang

A semi-active suspension system is researched for a heavy tracked vehicle to improve its suspension performance. This is achieved through a vane magnetorheological damper (VMRD) with special magnetic circuit which may attenuate the leak of MRF from assembly gap. A innovative strategy named frequency domain control (FDC) is proposed based on a conclusion that, in the frequency domain,the influence of damping coefficient to transmissibility for different suspension performance indicators is in good consistency. FDC only requires accelerometers mounted on sprung mass, meaning low price and high reliability that the tracked vehicle requires. The experiment indicates the designed semi-active suspension system based on VMRFD has an excellent vibration suppressing ability.


2020 ◽  
Vol 322 ◽  
pp. 01049
Author(s):  
Michal Kubík ◽  
Filip Jeniš ◽  
Igor Hašlík

The magnetorheological (MR) damper uses magnetorheological fluid which, when subjected to magnetic stimuli, generates an increase of damping forces. A significant problem of these dampers is their poor failsafe ability due to power supply interruption. In the case of faults, the damper remains in a low damping state, which is dangerous. This problem can be solved by accommodating a permanent magnet in the magnetic circuit of the damper. However, the magnetic circuit dynamic of this type of damper has rarely been studied. The main aim of this paper is to introduce the magnetic circuit dynamics of the magnetorheological damper/control valve with a permanent magnet. Firstly, the design of the magnetorheological valve with NdFe42 permanent magnet in the magnetic circuit is introduced. The response time of the magnetic field on the unit step of the control signal was calculated by transient magnetic simulation in Ansys Electronics software. The response time of the magnetic field was simulated in the range of 1.2 to 5 ms depending on the electric current magnitude and orientation. The presented MR damper was manufactured and tested. The experiments prove that the permanent magnet significantly affects the dynamics of the magnetic circuit.


Author(s):  
Maria Aline Gonçalves ◽  
Rodrigo Tumolin Rocha ◽  
Frederic Conrad Janzen ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset

2021 ◽  
Vol 11 (6) ◽  
pp. 2558
Author(s):  
Mario Troise ◽  
Matteo Gaidano ◽  
Pierpaolo Palmieri ◽  
Stefano Mauro

The rising interest in soft robotics, combined to the increasing applications in the space industry, leads to the development of novel lightweight and deployable robotic systems, that could be easily contained in a relatively small package to be deployed when required. The main challenges for soft robotic systems are the low force exertion and the control complexity. In this manuscript, a soft manipulator concept, having inflatable links, is introduced to face these issues. A prototype of the inflatable link is manufactured and statically characterized using a pseudo-rigid body model on varying inflation pressure. Moreover, the full robot model and algorithms for the load and pose estimation are presented. Finally, a control strategy, using inverse kinematics and an elastostatic approach, is developed. Experimental results provide input data for the control algorithm, and its validity domain is discussed on the basis of a simulation model. This preliminary analysis puts the basis of future advancements in building the robot prototype and developing dynamic models and robust control.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Aly Mousaad Aly

This paper presents vibration control of a building model under earthquake loads. A magnetorheological (MR) damper is placed in the building between the first floor and ground for seismic response reduction. A new control algorithm to command the MR damper is proposed. The approach is inspired by a quasi-bang-bang controller; however, the proposed technique gives weights to control commands in a fashion that is similar to a fuzzy logic controller. Several control algorithms including decentralized bang-bang controller, Lyapunov controller, modulated homogeneous friction controller, maximum energy dissipation controller, and clipped-optimal controller are used for comparison. The new controller achieved the best reduction in maximum interstory drifts and maximum absolute accelerations over all the control algorithms presented. This reveals that the proposed controller with the MR damper is promising and may provide the best protection to the building and its contents.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Yan-yang Wang ◽  
Yi-nong Li ◽  
Wei Sun ◽  
Chao Yang ◽  
Guang-hui Xu

The vibration of SRM obtains less attention for in-wheel motor applications according to the present research works. In this paper, the vertical component of SRM unbalanced radial force, which is named as SRM vertical force, is taken into account in suspension performance for in-wheel motor driven electric vehicles (IWM-EV). The analysis results suggest that SRM vertical force has a great effect on suspension performance. The direct cause for this phenomenon is that SRM vertical force is directly exerted on the wheel, which will result in great variation in tyre dynamic load and the tyre will easily jump off the ground. Furthermore, the frequency of SRM vertical force is broad which covers the suspension resonance frequencies. So it is easy to arouse suspension resonance and greatly damage suspension performance. Aiming at the new problem, FxLMS (filtered-X least mean square) controller is proposed to improve suspension performance. The FxLMS controller is based on active suspension system which can generate the controllable force to suppress the vibration caused by SRM vertical force. The conclusion shows that it is effective to take advantage of active suspensions to reduce the effect of SRM vertical force on suspension performance.


Sign in / Sign up

Export Citation Format

Share Document