scholarly journals Thousand words about cervical cancer and epigenetics

2016 ◽  
Vol 85 (3) ◽  
pp. 216 ◽  
Author(s):  
Dorota Ewa Bronowicka-Kłys ◽  
Patrycja Pawlik ◽  
Paweł Piotr Jagodziński

Epigenetic modifications include DNA methylation, DNA demethylation along with the major role fulfilled by TET protein. Epigenetic modifications refer to the regulation of gene expression without the alteration of the DNA sequence. Some of the most common epigenetic modifications include DNA methylation and demethylation, as well as the functional role of TET proteins. Epigenetic alterations are heritable traits, therefore one of the key elements to understanding the mechanisms of cancer development is to further our knowledge on the role and function of epigenetic modifications.This mini‑review takes into consideration the overview of the literature on the impact of epigenetic changes in cancer development, especially in the development of CC. Researchers believe that certain compounds are capable of inhibiting the process of DNA methylation and may play an important role in future cancer therapy.

2019 ◽  
Author(s):  
Michael J Reimer ◽  
Kirthi Pulakanti ◽  
Linzheng Shi ◽  
Alex Abel ◽  
Mingyu Liang ◽  
...  

Abstract Background: The Tet protein family (Tet1, Tet2, and Tet3) regulate DNA methylation through conversion of 5-methylcytosine to 5-hydroxymethylcytosine which can ultimately result in DNA demethylation and play a critical role during early mammalian development and pluripotency¬. While multiple groups have generated knockouts combining loss of different Tet proteins in murine embryonic stem cells (ESCs), differences in genetic background and approaches has made it difficult to directly compare results and discern the direct mechanism by which Tet proteins regulate the transcriptome. To address this concern, we utilized genomic editing in an isogenic pluripotent background which permitted a quantitative, flow-cytometry based measurement of pluripotency in combination with genome-wide assessment of gene expression and DNA methylation changes. Our ultimate goal was to generate a resource of large-scale datasets to permit hypothesis-generating experiments. Results: We demonstrate a quantitative disparity in the differentiation ability among Tet protein deletions, with Tet2 single knockout exhibiting the most severe defect, while loss of Tet1 ¬alone or combinations of Tet genes showed a quantitatively intermediate phenotype. Using a combination of transcriptomic and epigenomic approaches we demonstrate an increase in DNA hypermethylation and a divergence of transcriptional profiles in pluripotency among Tet deletions, with loss of Tet2 having the most profound effect in undifferentiated ESCs. Conclusions: We conclude that loss of Tet2 has the most dramatic effect both on the phenotype of ESCs and the transcriptome compared to other genotypes. While loss of Tet proteins increased DNA hypermethylation, especially in gene promoters, these changes in DNA methylation did not correlate with gene expression changes. Thus, while loss of different Tet proteins alters DNA methylation, this change does not appear to be directly responsible for transcriptome changes. Thus, loss of Tet proteins likely regulates the transcriptome epigenetically both through altering 5mC but also through additional mechanisms. Nonetheless, the transcriptome changes in pluripotent Tet2-/- ESCs compared to wild-type implies that the disparities in differentiation can be partially attributed to baseline alterations in gene expression.


2019 ◽  
Author(s):  
Michael J Reimer ◽  
Kirthi Pulakanti ◽  
Linzheng Shi ◽  
Alex Abel ◽  
Mingyu Liang ◽  
...  

Abstract Background: The Tet protein family (Tet1, Tet2, and Tet3) regulate DNA methylation through conversion of 5-methylcytosine to 5-hydroxymethylcytosine which can ultimately result in DNA demethylation and play a critical role during early mammalian development and pluripotency¬. While multiple groups have generated knockouts combining loss of different Tet proteins in murine embryonic stem cells (ESCs), differences in genetic background and approaches has made it difficult to directly compare results and discern the direct mechanism by which Tet proteins regulate the transcriptome. To address this concern, we utilized genomic editing in an isogenic pluripotent background which permitted a quantitative, flow-cytometry based measurement of pluripotency in combination with genome-wide assessment of gene expression and DNA methylation changes. Our ultimate goal was to generate a resource of large-scale datasets to permit hypothesis-generating experiments. Results: We demonstrate a quantitative disparity in the differentiation ability among Tet protein deletions, with Tet2 single knockout exhibiting the most severe defect, while loss of Tet1 ¬alone or combinations of Tet genes showed a quantitatively intermediate phenotype. Using a combination of transcriptomic and epigenomic approaches we demonstrate an increase in DNA hypermethylation and a divergence of transcriptional profiles in pluripotency among Tet deletions, with loss of Tet2 having the most profound effect in undifferentiated ESCs. Conclusions: We conclude that loss of Tet2 has the most dramatic effect both on the phenotype of ESCs and the transcriptome compared to other genotypes. While loss of Tet proteins increased DNA hypermethylation, especially in gene promoters, these changes in DNA methylation did not correlate with gene expression changes. Thus, while loss of different Tet proteins alters DNA methylation, this change does not appear to be directly responsible for transcriptome changes. Thus, loss of Tet proteins likely regulates the transcriptome epigenetically both through altering 5mC but also through additional mechanisms. Nonetheless, the transcriptome changes in pluripotent Tet2-/- ESCs compared to wild-type implies that the disparities in differentiation can be partially attributed to baseline alterations in gene expression.


2019 ◽  
Author(s):  
Michael J Reimer ◽  
Kirthi Pulakanti ◽  
Linzheng Shi ◽  
Alex Abel ◽  
Mingyu Liang ◽  
...  

Abstract Background: The Tet protein family (Tet1, Tet2, and Tet3) regulate DNA methylation through conversion of 5-methylcytosine to 5-hydroxymethylcytosine which can ultimately result in DNA demethylation and play a critical role during early mammalian development and pluripotency¬. While multiple groups have generated knockouts combining loss of different Tet proteins in murine embryonic stem cells (ESCs), differences in genetic background and approaches has made it difficult to directly compare results and discern the direct mechanism by which Tet proteins regulate the transcriptome. To address this concern, we utilized genomic editing in an isogenic pluripotent background which permitted a quantitative, flow-cytometry based measurement of pluripotency in combination with genome-wide assessment of gene expression and DNA methylation changes. Our ultimate goal was to generate a resource of large-scale datasets to permit hypothesis-generating experiments. Results: We demonstrate a quantitative disparity in the differentiation ability among Tet protein deletions, with Tet2 single knockout exhibiting the most severe defect, while loss of Tet1 ¬alone or combinations of Tet genes showed a quantitatively intermediate phenotype. Using a combination of transcriptomic and epigenomic approaches we demonstrate an increase in DNA hypermethylation and a divergence of transcriptional profiles in pluripotency among Tet deletions, with loss of Tet2 having the most profound effect in undifferentiated ESCs. Conclusions: We conclude that loss of Tet2 has the most dramatic effect both on the phenotype of ESCs and the transcriptome compared to other genotypes. While loss of Tet proteins increased DNA hypermethylation, especially in gene promoters, these changes in DNA methylation did not correlate with gene expression changes. Thus, while loss of different Tet proteins alters DNA methylation, this change does not appear to be directly responsible for transcriptome changes. Thus, loss of Tet proteins likely regulates the transcriptome epigenetically both through altering 5mC but also through additional mechanisms. Nonetheless, the transcriptome changes in pluripotent Tet2-/- ESCs compared to wild-type implies that the disparities in differentiation can be partially attributed to baseline alterations in gene expression.


2012 ◽  
Vol 3 (5) ◽  
pp. 395-402 ◽  
Author(s):  
Nathalie Véron

AbstractDynamic DNA methylation is a prerequisite for many developmental processes and maintenance of cellular integrity. In mammals however, mechanisms of active DNA demethylation have for long been elusive. The discovery of the ten-eleven translocation (Tet) family of enzymes that oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) or 5-carboxylcytosine (5caC) provided new means by which DNA methylation could actively be reversed. This review focuses on the possible mechanisms of DNA demethylation via Tet proteins and their metabolites 5hmC, 5fC and 5caC. Additionally, it discusses the roles of the three Tet protein family members Tet1, Tet2 and Tet3 as developmental regulators, probably in part independent of their enzymatic activity. By contrast, recent evidence suggests a function of 5hmC as an epigenetic mark on its own, going beyond the expectation of only acting as an intermediate in an active DNA demethylation pathway.


2020 ◽  
Vol 16 (2) ◽  
pp. 86-92
Author(s):  
Rafael Penadés ◽  
Bárbara Arias ◽  
Mar Fatjó-Vilas ◽  
Laura González-Vallespí ◽  
Clemente García-Rizo ◽  
...  

Background: Epigenetic modifications appear to be dynamic and they might be affected by environmental factors. The possibility of influencing these processes through psychotherapy has been suggested. Objective: To analyse the impact of psychotherapy on epigenetics when applied to mental disorders. The main hypothesis is that psychological treatments will produce epigenetic modifications related to the improvement of treated symptoms. Methods: A computerised and systematic search was completed throughout the time period from 1990 to 2019 on the PubMed, ScienceDirect and Scopus databases. Results: In total, 11 studies were selected. The studies were evaluated for the theoretical framework, genes involved, type of psychotherapy and clinical challenges and perspectives. All studies showed detectable changes at the epigenetic level, like DNA methylation changes, associated with symptom improvement after psychotherapy. Conclusion: Methylation profiles could be moderating treatment effects of psychotherapy. Beyond the detected epigenetic changes after psychotherapy, the epigenetic status before the implementation could act as an effective predictor of response.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 490
Author(s):  
Xueqi Qu ◽  
Christiane Neuhoff ◽  
Mehmet Ulas Cinar ◽  
Maren Pröll ◽  
Ernst Tholen ◽  
...  

Inflammation is regulated by epigenetic modifications, including DNA methylation and histone acetylation. Sulforaphane (SFN), a histone deacetylase (HDAC) inhibitor, is also a potent immunomodulatory agent, but its anti-inflammatory functions through epigenetic modifications remain unclear. Therefore, this study aimed to investigate the epigenetic effects of SFN in maintaining the immunomodulatory homeostasis of innate immunity during acute inflammation. For this purpose, SFN-induced epigenetic changes and expression levels of immune-related genes in response to lipopolysaccharide (LPS) stimulation of monocyte-derived dendritic cells (moDCs) were analyzed. These results demonstrated that SFN inhibited HDAC activity and caused histone H3 and H4 acetylation. SFN treatment also induced DNA demethylation in the promoter region of the MHC-SLA1 gene, resulting in the upregulation of Toll-like receptor 4 (TLR4), MHC-SLA1, and inflammatory cytokines’ expression at 6 h of LPS stimulation. Moreover, the protein levels of cytokines in the cell culture supernatants were significantly inhibited by SFN pre-treatment followed by LPS stimulation in a time-dependent manner, suggesting that inhibition of HDAC activity and DNA methylation by SFN may restrict the excessive inflammatory cytokine availability in the extracellular environment. We postulate that SFN may exert a protective and anti-inflammatory function by epigenetically influencing signaling pathways in experimental conditions employing porcine moDCs.


2018 ◽  
Vol 4 (11) ◽  
pp. eaau6986 ◽  
Author(s):  
Lu Wang ◽  
Patrick A. Ozark ◽  
Edwin R. Smith ◽  
Zibo Zhao ◽  
Stacy A. Marshall ◽  
...  

The tet methylcytosine dioxygenase 2 (TET2) enzyme catalyzes the conversion of the modified DNA base 5-methylcytosine to 5-hydroxymethylcytosine. TET2 is frequently mutated or dysregulated in multiple human cancers, and loss of TET2 is associated with changes in DNA methylation patterns. Here, using newly developed TET2-specific antibodies and the estrogen response as a model system for studying the regulation of gene expression, we demonstrate that endogenous TET2 occupies active enhancers and facilitates the proper recruitment of estrogen receptor α (ERα). Knockout of TET2 by CRISPR-CAS9 leads to a global increase of DNA methylation at enhancers, resulting in attenuation of the estrogen response. We further identified a positive feedback loop between TET2 and ERα, which further requires MLL3 COMPASS at these enhancers. Together, this study reveals an epigenetic axis coordinating a transcriptional program through enhancer activation via DNA demethylation.


Author(s):  
Douglas A. Irwin

This chapter concludes that international trade and trade policies are frequently the object of condemnation rather than approbation. It explains how the condemnation are often the result of misconceptions about the benefits of international trade, the impact of trade policies, and the role and function of the World Trade Organization (WTO). Though the last few decades have been marked by a general reduction in trade barriers, the matter is not settled because the pressures to weaken the commitment to open markets never abate. The chapter emphasizes on difficult policy choices at the intersection of trade policy and climate change that could hold key battles over the world trading system in coming years. It also highlights the several benefits of world trade and the contribution of trade to the welfare and prosperity of billions of people around the world.


Toxics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 56 ◽  
Author(s):  
Megan Culbreth ◽  
Michael Aschner

Methylmercury (MeHg) has conventionally been investigated for effects on nervous system development. As such, epigenetic modifications have become an attractive mechanistic target, and research on MeHg and epigenetics has rapidly expanded in the past decade. Although, these inquiries are a recent advance in the field, much has been learned in regards to MeHg-induced epigenetic modifications, particularly in the brain. In vitro and in vivo controlled exposure studies illustrate that MeHg effects microRNA (miRNA) expression, histone modifications, and DNA methylation both globally and at individual genes. Moreover, some effects are transgenerationally inherited, as organisms not directly exposed to MeHg exhibited biological and behavioral alterations. miRNA expression generally appears to be downregulated consequent to exposure. Further, global histone acetylation also seems to be reduced, persist at distinct gene promoters, and is contemporaneous with enhanced histone methylation. Moreover, global DNA methylation appears to decrease in brain-derived tissues, but not in the liver; however, selected individual genes in the brain are hypermethylated. Human epidemiological studies have also identified hypo- or hypermethylated individual genes, which correlated with MeHg exposure in distinct populations. Intriguingly, several observed epigenetic modifications can be correlated with known mechanisms of MeHg toxicity. Despite this knowledge, however, the functional consequences of these modifications are not entirely evident. Additional research will be necessary to fully comprehend MeHg-induced epigenetic modifications and the impact on the toxic response.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3869
Author(s):  
Kinga Linowiecka ◽  
Marek Foksinski ◽  
Anna A. Brożyna

Vitamin C is implicated in various bodily functions due to its unique properties in redox homeostasis. Moreover, vitamin C also plays a great role in restoring the activity of 2-oxoglutarate and Fe2+ dependent dioxygenases (2-OGDD), which are involved in active DNA demethylation (TET proteins), the demethylation of histones, and hypoxia processes. Therefore, vitamin C may be engaged in the regulation of gene expression or in a hypoxic state. Hence, vitamin C has acquired great interest for its plausible effects on cancer treatment. Since its conceptualization, the role of vitamin C in cancer therapy has been a controversial and disputed issue. Vitamin C is transferred to the cells with sodium dependent transporters (SVCTs) and glucose transporters (GLUT). However, it is unknown whether the impaired function of these transporters may lead to carcinogenesis and tumor progression. Notably, previous studies have identified SVCTs’ polymorphisms or their altered expression in some types of cancer. This review discusses the potential effects of vitamin C and the impaired SVCT function in cancers. The variations in vitamin C transporter genes may regulate the active transport of vitamin C, and therefore have an impact on cancer risk, but further studies are needed to thoroughly elucidate their involvement in cancer biology.


Sign in / Sign up

Export Citation Format

Share Document