Epigenetic Studies in Psychotherapy: A Systematic Review

2020 ◽  
Vol 16 (2) ◽  
pp. 86-92
Author(s):  
Rafael Penadés ◽  
Bárbara Arias ◽  
Mar Fatjó-Vilas ◽  
Laura González-Vallespí ◽  
Clemente García-Rizo ◽  
...  

Background: Epigenetic modifications appear to be dynamic and they might be affected by environmental factors. The possibility of influencing these processes through psychotherapy has been suggested. Objective: To analyse the impact of psychotherapy on epigenetics when applied to mental disorders. The main hypothesis is that psychological treatments will produce epigenetic modifications related to the improvement of treated symptoms. Methods: A computerised and systematic search was completed throughout the time period from 1990 to 2019 on the PubMed, ScienceDirect and Scopus databases. Results: In total, 11 studies were selected. The studies were evaluated for the theoretical framework, genes involved, type of psychotherapy and clinical challenges and perspectives. All studies showed detectable changes at the epigenetic level, like DNA methylation changes, associated with symptom improvement after psychotherapy. Conclusion: Methylation profiles could be moderating treatment effects of psychotherapy. Beyond the detected epigenetic changes after psychotherapy, the epigenetic status before the implementation could act as an effective predictor of response.

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2821
Author(s):  
Louise Rasmussen ◽  
Sine Knorr ◽  
Christian Skødt Antoniussen ◽  
Jens Meldgaard Bruun ◽  
Per Glud Ovesen ◽  
...  

Aims: This systematic review examines the association between maternal lifestyle, diet and physical activity, and epigenetic changes in the offspring. Methods: A literature search was conducted using multiple science databases: PubMed, Embase and Cochrane Library, on 10 March 2021. RCT and Cohort studies in English or Scandinavian languages were included. Exposure variables included diet, lifestyle, meal patterns or physical activity. Studies using dietary supplements as exposure variables were excluded. Outcome variables included were DNA methylation, microRNA or histone changes in placenta, cord blood or offspring. Two independent authors screened, read and extracted data from the included papers. The Cochrane risk-of-bias tool for randomized trials (RoB2) and The Critical Appraisal Skills Program (CASP) Cohort Study Checklist were used to assess risk of bias in the included studies. A qualitative approach was employed due to heterogeneity of exposures and results of the studies. Results: 16 studies and 3617 participants were included in the final analysis. The exposure variables included physical activity, carbohydrate, low glycemic index diet, added sugar, fat, Mediterranean diet and pro-inflammatory diet. The outcome variables identified were differences in DNA methylation and microRNA. Most studies described epigenetic changes in either placenta or cord blood. Genes reported to be methylated were GR, HSD2, IGF-2, PLAG1, MEG-3, H19 and RXRA. However, not all studies found epigenetic changes strong enough to pass multiple testing, and the study quality varied. Conclusion: Despite the variable quality of the included studies, the results in this review suggest that there may be an association between the mother’s lifestyle, diet and level of physical activity during pregnancy and epigenetic changes in the offspring.


Toxics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 56 ◽  
Author(s):  
Megan Culbreth ◽  
Michael Aschner

Methylmercury (MeHg) has conventionally been investigated for effects on nervous system development. As such, epigenetic modifications have become an attractive mechanistic target, and research on MeHg and epigenetics has rapidly expanded in the past decade. Although, these inquiries are a recent advance in the field, much has been learned in regards to MeHg-induced epigenetic modifications, particularly in the brain. In vitro and in vivo controlled exposure studies illustrate that MeHg effects microRNA (miRNA) expression, histone modifications, and DNA methylation both globally and at individual genes. Moreover, some effects are transgenerationally inherited, as organisms not directly exposed to MeHg exhibited biological and behavioral alterations. miRNA expression generally appears to be downregulated consequent to exposure. Further, global histone acetylation also seems to be reduced, persist at distinct gene promoters, and is contemporaneous with enhanced histone methylation. Moreover, global DNA methylation appears to decrease in brain-derived tissues, but not in the liver; however, selected individual genes in the brain are hypermethylated. Human epidemiological studies have also identified hypo- or hypermethylated individual genes, which correlated with MeHg exposure in distinct populations. Intriguingly, several observed epigenetic modifications can be correlated with known mechanisms of MeHg toxicity. Despite this knowledge, however, the functional consequences of these modifications are not entirely evident. Additional research will be necessary to fully comprehend MeHg-induced epigenetic modifications and the impact on the toxic response.


2020 ◽  
Vol 119 ◽  
pp. 105009
Author(s):  
Eva Unternaehrer ◽  
Samuel Carleial ◽  
Anke Koebach ◽  
Anja Zeller ◽  
Gunther Meinlschmidt ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 89 ◽  
Author(s):  
Rosita Stanzione ◽  
Maria Cotugno ◽  
Franca Bianchi ◽  
Simona Marchitti ◽  
Maurizio Forte ◽  
...  

Epigenetics is the branch of molecular biology that studies modifications able to change gene expression without altering the DNA sequence. Epigenetic modulations include DNA methylation, histone modifications, and noncoding RNAs. These gene modifications are heritable and modifiable and can be triggered by lifestyle and nutritional factors. In recent years, epigenetic changes have been associated with the pathogenesis of several diseases such as diabetes, obesity, renal pathology, and different types of cancer. They have also been related with the pathogenesis of cardiovascular diseases including ischemic stroke. Importantly, since epigenetic modifications are reversible processes they could assist with the development of new therapeutic approaches for the treatment of human diseases. In the present review article, we aim to collect the most recent evidence concerning the impact of epigenetic modifications on the pathogenesis of ischemic stroke in both animal models and humans.


2020 ◽  
Vol 21 (17) ◽  
pp. 6217
Author(s):  
Ismael Khouly ◽  
Rosalie Salus Braun ◽  
Michelle Ordway ◽  
Bradley Eric Aouizerat ◽  
Iya Ghassib ◽  
...  

Despite a number of reports in the literature on the role of epigenetic mechanisms in periodontal disease, a thorough assessment of the published studies is warranted to better comprehend the evidence on the relationship between epigenetic changes and periodontal disease and its treatment. Therefore, the aim of this systematic review is to identify and synthesize the evidence for an association between DNA methylation/histone modification and periodontal disease and its treatment in human adults. A systematic search was independently conducted to identify articles meeting the inclusion criteria. DNA methylation and histone modifications associated with periodontal diseases, gene expression, epigenetic changes after periodontal therapy, and the association between epigenetics and clinical parameters were evaluated. Sixteen studies were identified. All included studies examined DNA modifications in relation to periodontitis, and none of the studies examined histone modifications. Substantial variation regarding the reporting of sample sizes and patient characteristics, statistical analyses, and methodology, was found. There was some evidence, albeit inconsistent, for an association between DNA methylation and periodontal disease. IL6, IL6R, IFNG, PTGS2, SOCS1, and TNF were identified as candidate genes that have been assessed for DNA methylation in periodontitis. While several included studies found associations between methylation levels and periodontal disease risk, there is insufficient evidence to support or refute an association between DNA methylation and periodontal disease/therapy in human adults. Further research must be conducted to identify reproducible epigenetic markers and determine the extent to which DNA methylation can be applied as a clinical biomarker.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3446-3446
Author(s):  
Petra Tschanter ◽  
Isabell Schulze ◽  
Nicole Bäumer ◽  
Beate Surmann ◽  
Konstantin Agelopoulos ◽  
...  

Abstract Abstract 3446 Acute myeloid leukaemia (AML) is a malignant disease with poor prognosis, which is, among other biological features, characterized by epigenetic changes including alterations in DNA methylation. DNA methyltransferases (DNMT) play an important role in regulation of DNA methylation and mutations of DNMT3A are frequently found in AML. We analyzed the effects of DNMT overexpression on leukemogenesis using an inducible DNMT3B mouse model (Linhart et al., 2007). To analyse the impact of DNMT3B overexpression on leukemia we retrovirally co-transduced lineage-negative bone marrow cells of wildtype and DNMT3Btg mice with a MSCV-cMyc-bcl2 and a MSCV-tTA-GFP containing vector. Under these conditions, doxycycline suppressed DNMT3B expression whereas absence of doxycycline led to overexpression of DNMT3B on the mRNA and protein level. DNMT3B overexpression was not toxic since colony formation in vitro did not differ between DNMT3B expressing and physiologically expressing cells. To analyze leukemogenesis, 5 × 104 sorted GFP-positive cells were transplanted into sublethally irradiated wildtype recipients. Both recipients of transduced wildtype cells and recipients of transduced DNMT3Btg cells developed leukemia with a tendency of delayed leukemogenesis in DNMT3B overexpressing mice. GFP positive leukemic cells were sorted and doxycycline regulated DNMT3B expression was verified by Western blot analysis in vitro. To determine the repopulation capacity of the leukemic cells we performed transplantation of GFP-positive primary leukemia cells into secondary wildtype recipients. Leukemia of both, wildtype and DNMT3B-overexpressing donors was transplantable and lethal. However, DNMT3Btg leukemic cells were severely impaired in leukemia development in secondary recipients. Secondary recipients of leukemic DNMT3Btg cells died significantly later (p= 0.02). Taken together, these findings demonstrate that DNMT3B expression impairs leukemia maintenance. Loss of DNMT activity might contribute to the pool size of leukemia initiating cells. Disclosures: Krug: Boehringer Ingelheim: Research Funding.


2017 ◽  
Vol 210 (4) ◽  
pp. 261-268 ◽  
Author(s):  
Nina Schnyder ◽  
Radoslaw Panczak ◽  
Nicola Groth ◽  
Frauke Schultze-Lutter

BackgroundMental disorders create high individual and societal costs and burden, partly because help-seeking is often delayed or completely avoided. Stigma related to mental disorders or mental health services is regarded as a main reason for insufficient help-seeking.AimsTo estimate the impact of four stigma types (help-seeking attitudes and personal, self and perceived public stigma) on active help-seeking in the general population.MethodA systematic review of three electronic databases was followed by random effect meta-analyses according to the stigma types.ResultsTwenty-seven studies fulfilled eligibility criteria. Participants' own negative attitudes towards mental health help-seeking (OR = 0.80, 95% CI 0.73–0.88) and their stigmatising attitudes towards people with a mental illness (OR = 0.82, 95% CI 0.69–0.98) were associated with less active help-seeking. Self-stigma showed insignificant association (OR = 0.88, 95% CI 0.76–1.03), whereas perceived public stigma was not associated.ConclusionsPersonal attitudes towards mental illness or help-seeking are associated with active help-seeking for mental problems. Campaigns promoting help-seeking and fighting mental illness-related stigma should target these personal attitudes rather than broad public opinion.


Sign in / Sign up

Export Citation Format

Share Document