scholarly journals PENGARUH pH LARUTAN DAN UKURAN PARTIKEL ABU SEKAM PADI TERHADAP PENURUNAN KADAR CONGO RED

Molekul ◽  
2007 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
Tien Setyaningtyas ◽  
Uyi Sulaeman

Rice husk used as a raw material to produce the rice husk ash. The purpose of this research were to determine the optimum contact time and maximum pH of congo red adsorption by rice husk ash, to find out the influence of particle size to adsorption The rice husk was washed, then soaked in HCl 3.84 M to remove mineral impurities, and it was dried and heated for four hours at the temperature 6000 C. The yield gained from this research is 23.44%. Optimum contact time started at after five minutes and maximum pH is six for the tree mention particle sizes 50, 100 and 140 mesh. Particle size didn’t give any significant effect to adsorption process with percent decreasing of congo red is 84.97 %, 90.39 %, 89.32 % respectively.

Konversi ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Desi Nurandini ◽  
Riani Ayu Lestari ◽  
Isna Syauqiah ◽  
Ahmad Rizalli ◽  
Ryan Rahmatullah

The presence of heavy metal mercury (Hg2+) in liquid waste has caused serious problems to environmental pollution. One of the most effective method to reduce the levels of heavy metals mercury (Hg2+) in liquid waste is adsorption. Rice husk ash is highly potential to adsorb heavy metals in water because it is a porous material with a high silica content. Therefore, rice husk ash can be used as an adsorbent for heavy metals in liquid waste. The purpose of this study was to determine the level of mercury (Hg2+) that can be adsorbed from the column adsorption process using adsorbent of rice husk ash and to determine the optimum mass of rice husk ash as an adsorbent. The research was conducted using a series of simple adsorption column tools with a circulation time of 120 minutes. While the independent variables were adsorbent particle size of 50, 100, and 200 mesh. Measurement of mercury (Hg2+) levels was carried out on samples before and after treatment with Atomic Absorption Spectrophotometer (AAS). The results showed a significant decrease in Hg2+ levels with the optimum adsorbent particle size of 200 mesh. The value of the adsorbed Hg2+ ion content reached 101.670 mg/L in the adsorption process using adsorbent with 200 mesh particle size . 


Author(s):  
A. E. Duke ◽  
E. E. Eno

Controlled burning of rice husks at<700°C produced rice husk ash (RHA) which is predominantly amorphous silica (SiO2). RHA was used as a substitute for laterite and cement in proportions of 5%, 10%, 15%, 20%, 25% and 30% of concrete. The concrete was cured for 7 days, 14 days, 21 days, and 28 days respectively. It was observed that 20% of RHA provides the optimum strength. The effects of different particle sizes of 75, 150, 212, 300, 425 and 600 microns (µm) were tested using a compression test machine. A graph of average strength against particle size indicates 2.9 Nm-2 as the optimum strength at 75 µm and 1.2 Nm-2 as the minimum at 150 µm. From the ash size distribution, the presence of grains of several different sizes was observed. The grains were weighed using a weighing machine and a graph of particle size against percentage plotted to determine the particle size distribution. This showed that rice husk ash (RHA) is coarse grain material.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1015-1019
Author(s):  
Ze Xin Yang ◽  
Lin Dong ◽  
Meng Wang ◽  
Huan Li

The main purpose of this article is to develop an environmentally friendly and economically effective process to produce silica from rice husk ash. Sodium silicate solution was prepared by the reaction of rice husk ash and sodium hydroxide solution, and then the sodium silicate solution was used as the raw material for the preparation of silica with sodium bicarbonate. During the reaction, the by-product can be passed into CO2 to prepare sodium bicarbonate what can be reutilized. Experimental route achieved resource recycling and environment-friendly, low energy consumption, zero emissions and so on. Meanwhile the microstructures of the silica powders were characterized by Transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Thermo gravimetric/Differential thermal analyzer (TG-DTA).The purity of silicon was up to 99.43% and the particle size was 200-300nm.


2020 ◽  
Vol 1012 ◽  
pp. 233-238
Author(s):  
Vanessa Moura de Souza ◽  
Vinícius Martins ◽  
Rejane Maria Candiota Tubino

This paper evaluated the use of the pitcher, a ceramic waste obtained through the quality process of a sanitary ware industry, in the development of a material for usage in the manufacture of sintered parts. The pitcher was obtained through powder technology and is composed, according to the chemical analysis obtained by X-ray fluorescence spectrometry, of clayey minerals (clay and kaolin), quartz, and feldspar, which may include ceramic rocks such as granite, pegmatite and phyllite; that is, it has proved to be a potential raw material due to the minerals that can still be reused. The pitcher passed through a granulometry-based selection process, sieving about 20kg using the following sieve sequence: 18 MESH, 25 MESH, 30 MESH, 120 MESH and 400 MESH; with around 70% of the residue being retained in the sieves of 120 and 400 MESH, which were selected to be used in the evaluation. The samples were compacted in a manual press with different pressures, between 300 and 1000 kgf, and after were sintered at a temperature of 1100oC in a resistive furnace. To characterize the material, the apparent and green density, as well as the compressibility curve, were determined to identify the best compression pressure. The microstructure of the test specimen and the pitcher homogeneity were evaluated using Scanning Electron Microscopy (SEM). Both particle sizes presented the typical compressibility curve, in which the density increases with increasing compaction pressure, while the curve slope decreases with increasing pressure. The density increase with the increasing compaction pressure indicates a good densification for the temperatures, independent of the sample granulometry. The sintering porosity decreased proportionally to the particle size in the sintered samples. The analysis showed that the particle size of 400 MESH sintered at 1100oC obtained more porous surfaces, thus indicating a promising future for the manufacture of parts using powder technology, especially for the development of filters.


2011 ◽  
Vol 46 (1) ◽  
pp. 101-104 ◽  
Author(s):  
S Naeem ◽  
U Zafar ◽  
T Amann

In this investigation, adsorption of cyanide has been studied by means of batch-technique. Percentage adsorption was determined for Rice Husk Ash (RHA)-Cyanide solution system as a function of i) contact time, ii) pH, iii) adsorbate concentration and iv) temperature. Adsorption data has been interpreted in terms of Freundlich and Langmuir equations. Thermodynamics parameters for the adsorption system have been determined at three different temperatures. The value of ΔH°=38.326KJ/mole and ΔG°=-6.117KJ/mole at 283°K suggest that the adsorption of cyanide on RHA is an endothermic and a spontaneous process.Key words: Cyanide; Rice husk ash (RHA); Adsorption Isotherms DOI: http://dx.doi.org/10.3329/bjsir.v46i1.3524 Bangladesh J. Sci. Ind. Res. 46(1), 101-104, 2011


2020 ◽  
Vol 17 (3(Suppl.)) ◽  
pp. 0953
Author(s):  
Medhat Mostafa ◽  
Hamdy Salah ◽  
Amro B. Saddek ◽  
Nabila Shehata

The objective of the study is developing a procedure for production and characterization of rice husk ash (RHA). The effects of rice husk (RH) amount, burning/cooling conditions combined with stirring on producing of RHA with amorphous silica, highest SiO2, lowest loss on ignition (LOI), uniform particle shape distribution and nano structured size have been studied. It is concluded that the best amount is 20 g RH in 125 ml evaporating dish Porcelain with burning for 2 h at temperature 700 °C combined with cooling three times during burning to produce RHA with amorphous silica, SiO2 90.78% and LOI 1.73%. On the other hand, cooling and stirring times affect the variation of nano structured size and particle shape distribution. However, no crystalline phases were found in RHA in all cases. Results proved that the Attritor ball mill was more suitable than vibration disk mill for pulverizing nano structured RHA with 50% of particle size (D50) lower than 45 mm and 99 % of particle size (D99) lower than 144 mm to nanosized RHA with D50 lower than 36 nm and D99 lower than 57 nm by grinding time 8.16 min to every 1 g RHA without changes in morphousity of silica.


RSC Advances ◽  
2020 ◽  
Vol 10 (41) ◽  
pp. 24642-24652
Author(s):  
Yisong Wang ◽  
He Jia ◽  
Xin Fang ◽  
Ziyang Qiu ◽  
Tao Du

Framework hybrid W-ZSM-5 and W-silicalite-1 zeolites were synthesized by hydrothermal methods using rice husk ash (RHA) as a silicon raw material.


2018 ◽  
Vol 197 ◽  
pp. 05002 ◽  
Author(s):  
Citra Deliana Dewi Sundari ◽  
Soni Setiadji ◽  
Yusuf Rohmatullah ◽  
Sanusi Sanusi ◽  
Denia Febby Nurbaeti ◽  
...  

Rice husk has a high silica content, so it can be utilized as silica source for zeolite synthesis. In this research, synthesis of zeolite L has been done using silica from rice husk ash without organic template. The synthesized zeolite L is then used as an adsorbent to adsorb methylene blue dye. The steps of zeolite L synthesis include: silica extraction from rice husk ash using NaOH and zeolite L synthesis using hydrothermal method with molar ratio 10 SiO2: Al2O3: 4 K2O: 100 H2O at 170°C for 24 hours. The resulting Zeolite L was then characterized by XRD and SEM. The absorption capacity of methylene blue solution by zeolite L was observed experimentally through the effect of pH of the solution, contact time, and initial concentration of the solution, then determining the isotherm and its absorption kinetics. From XRD and SEM results of zeolite L sample, it is shown that zeolite L has been formed and its particle morphology is a hollow cylinder with cylinder diameter of 0.049 - 0.123 μm. The adsorption process refers to the Freundlich isotherm model which provides the highest correlation coefficient. The methylene blue adsorption process by zeolite L follows pseudo second-order kinetics.


2019 ◽  
Vol 14 (4) ◽  
pp. 897-907 ◽  
Author(s):  
Hosseinali Asgharnia ◽  
Hamidreza Nasehinia ◽  
Roohollah Rostami ◽  
Marziah Rahmani ◽  
Seyed Mahmoud Mehdinia

Abstract Phenol and its derivatives are organic pollutants with dangerous effects, such as poisoning, carcinogenicity, mutagenicity, and teratogenicity in humans and other organisms. In this study, the removal of phenol from aqueous solution by adsorption on silica and activated carbon of rice husk was investigated. In this regard, the effects of initial concentration of phenol, pH, dosage of the adsorbents, and contact time on the adsorption of phenol were investigated. The results showed that the maximum removal of phenol by rice husk silica (RHS) and rice husk activated carbon (RHAC) in the initial concentration of 1 mgL−1 phenol, 2 gL−1 adsorbent mass, 120 min contact time, and pH 5 (RHS) or pH 6 (RHAC) were obtained up to 91% and 97.88%, respectively. A significant correlation was also detected between increasing contact times and phenol removal for both adsorbents (p &lt; 0.01). The adsorption process for both of the adsorbents was also more compatible with the Langmuir isotherm. The results of this study showed that RHS and RHAC can be considered as natural and inexpensive adsorbents for water treatment.


2010 ◽  
Vol 163-167 ◽  
pp. 2333-2336 ◽  
Author(s):  
Kun Yu

Three natural graphite flakes (35, 50 and 80 mesh) were used as raw material. Exfoliated graphite (EG) was prepared by rapidly heating residue H2SO4-graphite intercalation compounds (RGIC) in a muffle and by irradiating it in a microwave oven, respectively. Results show that the exfoliation volume of EG decreases with decreasing the raw graphite particle size. Compared with muffle heating, microwave irradiation is more helpful for the exfoliation of RGICs, especially for the small particle samples.


Sign in / Sign up

Export Citation Format

Share Document