scholarly journals American’s Energy Future: An Analysis of the Proposed Energy Policy Plans in Presidential Election

Author(s):  
Ming-Hsun Cheng ◽  
Minliang Yang ◽  
Yu Wang

As the leader of the largest economy, President of the United States has substantive influence on addressing the global climate change problem. However, presidential election is often dominated by issues other than energy problems. This paper focuses on the on-going 2016 presidential election, examining the energy plans proposed by the leading Democrat and Republican candidates. Our data from the Iowa caucus survey in January 2016 suggests that voters are more concerned about terrorism and economic issues than environmental relative issues. We then compare the Democratic and Republican candidate’s view of American’s energy future, and evaluate their proposed renewable energy targets. We find that the view on renewable energy is polarized between Democratic and Republican candidates, while candidates from both parties agree on the need for energy efficiency. Results from our ordinal least squares regression models suggest that Democratic candidates have moderate to ambitious goals for developing solar and other renewable energy. The Republican candidates favor fossil fuel and they neglect to provide any plan for renewable energy. In addition, this trend of polarization has grown more significant when compared with the past three presidential elections. Our observation suggests that energy issues need to be discussed more to draw broader attention to salient issues of diversifying and decarbonizing the nation’s energy system.

Author(s):  
Michael B. McElroy

The discussion in chapter 2 addressed what might be described as a microview of the US energy economy— how we use energy as individuals, how we measure our personal consumption, and how we pay for it. We turn attention now to a more expansive perspective— the use of energy on a national scale, including a discussion of associated economic benefits and costs. We focus specifically on implications for emissions of the greenhouse gas CO2. If we are to take the issue of human- induced climate change seriously— and I do— we will be obliged to adjust our energy system markedly to reduce emissions of this gas, the most important agent for human- induced climate change. And we will need to do it sooner rather than later. This chapter will underscore the magnitude of the challenge we face if we are to successfully chart the course to a more sustainable climate- energy future. We turn later to strategies that might accelerate our progress toward this objective.We elected in this volume to focus on the present and potential future of the energy economy of the United States. It is important to recognize that the fate of the global climate system will depend not just on what happens in the United States but also to an increasing extent on what comes to pass in other large industrial economies. China surpassed the United States as the largest national emitter of CO2 in 2006. The United States and China together were responsible in 2012 for more than 42% of total global emissions. Add Russia, India, Japan, Germany, Canada, United Kingdom, South Korea, and Iran to the mix (the other members of the top 10 emitting countries ordered in terms of their relative contributions), and we can account for more than 60% of the global total. Given the importance of China to the global CO2 economy (more than 26% of the present global total and likely to increase significantly in the near term), I decided that it would be instructive to include here at least some discussion of the situation in China— to elaborate what the energy economies of China and the United States have in common, outlining at the same time the factors and challenges that set them apart.


2009 ◽  
Vol 22 (16) ◽  
pp. 4336-4347 ◽  
Author(s):  
C. A. Woodhouse ◽  
J. L. Russell ◽  
E. R. Cook

Abstract Droughts, which occur as a part of natural climate variability, are expected to increase in frequency and/or severity with global climate change. An improved understanding of droughts and their association with atmospheric circulation will add to the knowledge about the controls on drought, and the ways in which changes in climate may impact droughts. In this study, 1) major drought patterns across the United States have been defined, 2) the robustness of these patterns over time using tree-ring-based drought reconstructions have been evaluated, and 3) the drought patterns with respect to global atmospheric pressure patterns have been assessed. From this simple assessment, it is suggested that there are two major drought patterns across North America, which together account for about 30% of the total variance in drought patterns—one resembles the classic ENSO teleconnection, and the other displays an east–west drought dipole. The same two patterns are evident in the instrumental data and the reconstructed drought data for two different periods, 1404–2003 and 900–1350. The 500-mb circulation patterns associated with the two drought patterns suggest that the controls on drought may come from both Northern Hemisphere and tropical sources. The two drought patterns, and presumably their associated circulation patterns, vary in strength over time, indicating the combined effects of the two patterns on droughts over the past millennium.


2018 ◽  
Vol 10 (8) ◽  
pp. 2650 ◽  
Author(s):  
Anke Schaffartzik ◽  
Marina Fischer-Kowalski

The global energy system subsumes both extreme wealth (and waste) and extreme poverty. A minority of the global population is consuming the majority of the fossil fuel-based energy and causing global warming. While the mature industrialized economies maintain their high levels of energy consumption, the emerging economies are rapidly expanding their fossil energy systems, emulating traditional patterns of industrialization. We take a global, socio-metabolic perspective on the energy transition phases—take-off, maturation, and completion—of 142 countries between 1971 and 2015. Even within our global fossil energy system, the transition to fossil energy is still ongoing; many countries are in the process of replacing renewable energy with fossil energy. However, due to globally limited supplies and sinks, continuing the fossil energy transition is not an indefinite option. Rather than a “Big Push” for renewable energy within pockets of the fossil energy system, a sustainability transformation is required that would change far more than patterns of energy supply and use. Where this far-reaching change requires pushing back against the fossil energy system, the energy underdogs—the latecomers to the fossil energy transition—just might come out on top.


Author(s):  
Reza Alayi ◽  
Mehrdad Ahmadi Kamarposhti ◽  
Majid Gharibi ◽  
Sara Abbasi zanghaneh ◽  
Mehdi Jahangiri ◽  
...  

Transitioning to renewable energy is part of the answer to, on the one hand, growing industrial development and the rising demand for energy and, on the other,  environmental concerns and the need to preserve fossil fuel resources for future generations. This research focuses on the potential for integrating hydrogen storage into a highly reliable renewable energy system. The purpose of this study is to determine the potential of renewable energy in an Iranian location, in a project that looks at a power grid in various connected and disconnected scenarios involving hydrogen storage. The energy potential is identified: annual production capacity is 2218818 kW, requiring a total investment outlay of US$697,624.


Author(s):  
Corwin Smidt

This article examines the role of Catholics within the 2020 presidential election in the United States. Although Catholics were once a crucial and dependable component of the Democratic Party’s electoral coalition, their vote in more recent years has been much more splintered. Nevertheless, Catholics have been deemed to be an important “swing vote” in American politics today, as in recent presidential elections they have aligned with the national popular vote. This article therefore focuses on the part that Catholics played within the 2020 presidential election process. It addresses the level of political change and continuity within the ranks of Catholics over the past several elections, how they voted in the Democratic primaries during the initial stages of the 2020 presidential election, their level of support for different candidates over the course of the campaign, how they ultimately came to cast their ballots in the 2020 election, and the extent to which their voting patterns in 2020 differed from that of 2016.


2018 ◽  
Vol 10 (10) ◽  
pp. 3438 ◽  
Author(s):  
Christos Ioakimidis ◽  
Konstantinos Genikomsakis

This paper considers the case of São Miguel in the Azores archipelago as a typical example of an isolated island with high renewable energy potential, but low baseload levels, lack of energy storage facilities, and dependence on fossil fuels that incurs high import costs. Using the Integrated MARKAL-EFOM System (TIMES), a number of scenarios are examined in order to analyze and assess the potential benefits from the implementation of a seawater pumped-storage (SPS) system, in the absence or presence of electric drive vehicles (EDVs) under a grid-to-vehicle (G2V) approach. The results obtained show that the proposed solution increases the penetration of renewable energy in the system, thus reducing the dependence on fossil fuel imports and allowing, at the same time, for the deployment of EDVs as a promising environmentally friendly alternative to conventional vehicles with internal combustion engines.


2021 ◽  
Vol 1 ◽  
Author(s):  
Majid Monemzadeh ◽  
Mahnaz Talebi-Dastenaei2

University of Kashan was founded in 1974 and is the oldest institution of higher education in Kashan. Kashan (33° 58' 59" N / 51° 25' 56" E) climate is classified as a hot and dry by the Köppen-Geiger system. This climate causes a large amount of energy consumption for University at springs and summers. On the other hand, it means that sun is shining strongly for more than 6 months and University of Kashan has been working on some solutions to use solar energy and decrease dependency on the old fossil-fuel energy system. The current paper studies some of the main activities of University of Kashan on Energy Saving and Renewable Energy Production programs such as CCHP plant (The first Combined Cool, Heat, and Power plant in Iran), using solar panels and energy-efficient appliances.


2019 ◽  
Author(s):  
Johannes Schmidt ◽  
Katharina Gruber ◽  
Michael Klingler ◽  
Claude Klöckl ◽  
Luis Ramirez Camargo ◽  
...  

Recent global modelling studies suggest a decline of long-distance trade in energy carriers in future global renewable energy systems, compared to today’s fossil fuel energy system. In contrast, we identified four crucial drivers that enable trade of renewable energy carriers. These drivers could make trade remain at current levels or even increase during the transition to an energy system with very high shares of renewables. First, new land-efficient technologies for renewable fuel production become increasingly available and technically allow for long-distance trade in renewables. Second, regional differences in social acceptance and land availability for energy infrastructure support the development of renewable fuel import and export streams. Third, the economics of renewable energy systems, i.e. the different production conditions globally and the high costs of fully renewable regional electricity systems, will create opportunities for spatial arbitrage. Fourth, the reduction of stranded investments in the fossil fuel sector is possible by switching from fossil fuel to renewable fuel trade in exporting regions.The impact of these drivers on trade in energy carriers is currently under-investigated by the global energy research community. Therefore, we call for a major research effort in this field, in particular as trade can redistribute profits and losses of climate change mitigation and may hence support finding new partners in climate change mitigation negotiations.


Author(s):  
SRI UTAMI

ABSTRAKAndil pariwisata terhadap perkembangan regional sangat besar begitu juga andilnya terhadap permasalahan lingkungan. Untuk mengurangi aspek negatif terhadap lingkungan serta meningkatkan penghematan, sistem energi terbarukan menempati prioritas penting dalam bidang pariwisata. Konfigurasi optimal sistem energi terbarukan direncanakan menggunakan Algoritma Genetika. Penelitian ini dilakukan untuk mengoptimasi sistem energi terbarukan di Parangtritis, Kretek, Bantul, Jawa Tengah. Sistem yang dirancang terdiri dari sel surya dan turbin angin, sedangkan sistem penyimpanannya menggunakan baterai dan fuel cell. Algoritma ini meminimisasi fungsi objektif biaya total yang terdiri dari biaya investasi, biaya penggantian serta biaya operasi dan perawatan. Kehandalan sistem dievaluasi menggunakan indeks Equivalent Loss Factor (). Indeks ini memberikan informasi jumlah energi yang tidak dapat dipasok oleh sistem energi terbarukan. Hasil simulasi memperlihatkan jumlah optimal sistem energi terbarukan dicapai dengan jumlah sel surya sebanyak 3, baterai 48,turbin angin sebanyak 36, elektroliser sebanyak 3, tangki hidrogen 2 dan fuel cell sebanyak 8. Nilai ELF yang digunakan dalam penelitian ini adalah 0.01.ABSTRACTTourism has a massive contribution to regional development and shares environmental issues. Reducing reliances on fossil fuel, it is not still adequating energy consumption yet to cause development of renewable energy in crucial position for tourism desicition. An optimal configuration of renewable energy system was planned by Genetic Algorithm in this work. This research conducted to optimize renewable  energy system in Parangtritis, Kretek, Bantul Central Java. The system consisted of solar cells and wind turbines, and the batteries and fuel cells were as storage system. The algorithm minimize objective function of total cost consisted of investment, replacement as well as operating and maintenance costs. A reability evaluation of the system was given by Equivalent Loss Factor (). This index inform an insufficient energy in the systems. The simulation showed an optimum size of the system, achieved by size of PV, battery, wind turbine, electrolizer, hidrogen tank and fuel cell were  3, 48, 36, 3, 2, 8 respectively. The ELF used in this simulation was 0.01. Keywords: fossil fuel,  renewable energy, tourism, Equivalent Lost Factor 


2022 ◽  
Author(s):  
Xinying Qin ◽  
Dan Tong ◽  
Fei Liu ◽  
Ruili Wu ◽  
Bo Zheng ◽  
...  

The past three decades have witnessed the dramatic expansion of global biomass- and fossil fuel-fired power plants, but the tremendously diverse power infrastructure shapes different spatial and temporal CO2 emission characteristics. Here, by combining Global Power plant Emissions Database (GPED v1.1) constructed in this study and the previously developed China coal-fired power Plant Emissions Database (CPED), we analyzed global and regional changes in generating capacities, age structure, and CO2 emissions by fuel type and unit size, and further identified the major driving forces of these global and regional structure and emission trends over the past 30 years. Accompanying the growth of fossil fuel- and biomass-burning installed capacity from 1,774 GW in 1990 to 4,139 GW in 2019 (a 133.3% increase), global CO2 emissions from the power sector relatively increased from 7.5 Gt to 13.9 Gt (an 85.3% increase) during the same period. However, diverse developments and transformations of regional power units in fuel types and structure characterized various regional trends of CO2 emissions. For example, in the United States and Europe, CO2 emissions from power plants peaked before 2005, driven by the utilization of advanced electricity technologies and the switches from coal to gas fuel at the early stage. It is estimated the share of identified low-efficiency coal power capacity decreased to 4.3% in the United States and 0.6% in Europe with respectively 2.1% and 13.2% thermal efficiency improvements from 1990-2019. In contrast, CO2 emissions in China, India, and the rest of world are still steadily increasing because the growing demand for electricity is mainly met by developing carbon-intensive but less effective coal power capacity. The index decomposition analysis (IDA) to identify the multi-stage driving forces on the trends of CO2 emissions further suggests different global and regional characteristics. Globally, the growth of demand mainly drives the increase of CO2 emissions for all stages (i.e. 1990-2000, 2000-2010 and 2010-2019). Regional results support the critical roles of thermal efficiency improvement (accounting for 20% of the decrease in CO2 emissions) and fossil fuel mix (61%) in preventing CO2 emission increases in the developed regions (e.g., the United States and Europe). The decrease of fossil fuel share gradually demonstrates its importance in carrying the positive effects on curbing emissions in the most of regions, including the developing economics (i.e. China and India) after 2010 (accounting for 46% of the decrease in CO2 emissions). Our results highlight the contributions of different driving forces to emissions have significantly changed over the past 30 years, and this comprehensive analysis indicates that the structure optimization and transformations of power plants is paramount importance to curb or further reduce CO2 emissions from the power sector in the future.


Sign in / Sign up

Export Citation Format

Share Document