scholarly journals Integration of Seawater Pumped-Storage in the Energy System of the Island of São Miguel (Azores)

2018 ◽  
Vol 10 (10) ◽  
pp. 3438 ◽  
Author(s):  
Christos Ioakimidis ◽  
Konstantinos Genikomsakis

This paper considers the case of São Miguel in the Azores archipelago as a typical example of an isolated island with high renewable energy potential, but low baseload levels, lack of energy storage facilities, and dependence on fossil fuels that incurs high import costs. Using the Integrated MARKAL-EFOM System (TIMES), a number of scenarios are examined in order to analyze and assess the potential benefits from the implementation of a seawater pumped-storage (SPS) system, in the absence or presence of electric drive vehicles (EDVs) under a grid-to-vehicle (G2V) approach. The results obtained show that the proposed solution increases the penetration of renewable energy in the system, thus reducing the dependence on fossil fuel imports and allowing, at the same time, for the deployment of EDVs as a promising environmentally friendly alternative to conventional vehicles with internal combustion engines.

Author(s):  
Reza Alayi ◽  
Mehrdad Ahmadi Kamarposhti ◽  
Majid Gharibi ◽  
Sara Abbasi zanghaneh ◽  
Mehdi Jahangiri ◽  
...  

Transitioning to renewable energy is part of the answer to, on the one hand, growing industrial development and the rising demand for energy and, on the other,  environmental concerns and the need to preserve fossil fuel resources for future generations. This research focuses on the potential for integrating hydrogen storage into a highly reliable renewable energy system. The purpose of this study is to determine the potential of renewable energy in an Iranian location, in a project that looks at a power grid in various connected and disconnected scenarios involving hydrogen storage. The energy potential is identified: annual production capacity is 2218818 kW, requiring a total investment outlay of US$697,624.


2015 ◽  
Vol 19 (3) ◽  
pp. 771-780 ◽  
Author(s):  
Zihnija Hasovic ◽  
Boris Cosic ◽  
Adisa Omerbegovic-Arapovic ◽  
Neven Duic

This paper investigates current and planned investments in new power plants in Bosnia and Herzegovina and impact of these investments on the energy sector, CO2 emission and internationally committed targets for electricity from renewable sources up to year 2020. Bosnia and Herzegovina possesses strong renewable energy potential, in particular hydro and biomass. However, the majority of energy production is conducted in outdated power plants and based on fossil fuels, resulting in environment pollution. New major investments The Stanari Thermal plant (300 MW) and the investment in Block 7 (450 MW) at the Thermal Plant Tuzla are again focused on fossil fuels. The power sector is also highly dependent on the hydrology as 54% of current capacities are based on large hydro power. In order to investigate how the energy system of Bosnia and Herzegovina will be affected by these investments and hydrology, the EnergyPLAN model was used. Based on the foreseen demand for year 2020 several power plants construction and hydrology scenarios have been modelled to cover a range of possibilities that may occur. This includes export orientation of Stanari plant, impact of wet, dry and average year, delayed construction of Tuzla Block 7, constrained construction of hydro power plants, and retirement of thermal units. It can be concluded that energy system can be significantly affected by delayed investments but in order to comply with renewables targets Bosnia and Herzegovina will need to explore the power production from other renewable energy sources as well.


2020 ◽  
Vol 8 (6) ◽  
pp. 1980-1983

The world presently depends heavily on nonrenewable sources of energy like crude oils. These conventional energy sources have certain limitations, that is, they will eventually run out, fuel prices can rise without warning and most importantly growing environmental concerns over the climate change associated with the release of CO2 on burning fossil fuels[1]. Renewable energy is the key to a clean energy future. In the last few decades, solar energy is the fastest growing renewable energy source[2]. We can harness this energy of the sun in increasing the efficiency of our automobiles. Forced induction system (supercharger and turbocharger) in automobiles helps in the improvement of the efficiency of internal combustion engines by pushing extra atmospheric air into the cylinder which results in the proper combustion of fuel and thus reducing the smoke from the exhaust gas. Conventional Supercharger draws power from the engine and though the overall mechanical efficiency is increased but some energy is lost in powering the supercharger. The main purpose of this paper is to develop a solar-powered supercharger which will not consume extra power from the engine and thus increase the overall efficiency of the engine along with a reduction in CO2 emission.


Author(s):  
Vaclav Smil

This chapter discusses the evolution in uses of fossil fuels, primary electricity, and renewable energy. It first considers the transition from phytomass fuels to fossil fuels and how it resulted in the substantial increase in per capita consumption of energy. It then explores the beginnings and diffusion of coal extraction, the replacement of charcoal by metallurgical coke, and the introduction of steam engines and oil and internal combustion engines. It also looks at technical innovations brought by the transition from phytomass fuels to fossil fuels and from animate to mechanical prime movers, focusing on trends in the production of coal, hydrocarbons, and electricity as well as renewable energy and the use of prime movers in transportation.


Author(s):  
Ilarie Ivan ◽  
Florin Mariasiu

In the present days, the needing of development the new classes of fuels is a real and immediate challenge for the humanity. These new classes of fuel must replace the fossil fuel in order to reduce the global pollution and to be friendly with the environment. The researches conducted until now in worldwide and also at the Biofuel Laboratory of Mechanic Faculty (under the supervision of prof. N. Burnete, Ph.D.) show that the biofuels based on vegetable oil can be an answer to the above mentioned issues. In addition, it is necessary to study the impact of this class of biofuels in time on the air and soil pollution, vegetable and animal products etc. The present paper presents the experimental researches about the environmental impact of using the biofuels comparatively with fossil fuels (diesel oil). The research methodology was making in order to respect the actual standards to obtain more accurate and confident results. The basic conclusion of conducted experiments is that the using the biofuels in the internal combustion engines beside of diesel oil can be an important factor to reduce the pollution factors on environment.


2020 ◽  
Vol 119 (820) ◽  
pp. 317-322
Author(s):  
Michael T. Klare

By transforming patterns of travel and work around the world, the COVID-19 pandemic is accelerating the transition to renewable energy and the decline of fossil fuels. Lockdowns brought car commuting and plane travel to a near halt, and the mass experiment in which white-collar employees have been working from home may permanently reduce energy consumption for business travel. Renewable energy and electric vehicles were already gaining market share before the pandemic. Under pressure from investors, major energy companies have started writing off fossil fuel reserves as stranded assets that are no longer worth the cost of extracting. These shifts may indicate that “peak oil demand” has arrived earlier than expected.


Author(s):  
Kathleen Araújo

The discovery of oil in Pennsylvania in 1859 was a relatively inconspicuous precursor to what would become an epic shift into the modern age of energy. At the time, the search for “rock oil” was driven by a perception that lighting fuel was running out. Advances in petrochemical refining and internal combustion engines had yet to occur, and oil was more expensive than coal. In less than 100 years, oil gained worldwide prominence as an energy source and traded commodity. Along similar lines, electricity in the early 1900s powered less than 10% of the homes in the United States. Yet, in under a half a century, billions of homes around the world were equipped to utilize the refined form of energy. Estimates indicate that roughly 85% of the world’s population had access to electricity in 2014 (World Bank, n.d.b). For both petroleum and electricity, significant changes in energy use and associated technologies were closely linked to evolutions in infrastructure, institutions, investment, and practices. Today, countless decision-makers are focusing on transforming energy systems from fossil fuels to low carbon energy which is widely deemed to be a cleaner, more sustainable form of energy. As of 2016, 176 countries have renewable energy targets in place, compared to 43 in 2005 (Renewable Energy Policy Network for the 21st Century [REN21], 2017). Many jurisdictions are also setting increasingly ambitious targets for 100% renewable energy or electricity (Bloomberg New Energy Finance [BNEF], 2016). In 2015, the G7 and G20 committed to accelerate the provision of access to renewables and efficiency (REN21, 2016). In conjunction with all of the above priorities, clean energy investment surged in 2015 to a new record of $329 billion, despite low, fossil fuel prices. A significant “decoupling” of economic and carbon dioxide (CO2) growth was also evident, due in part to China’s increased use of renewable energy and efforts by member countries of the Organization for Economic Cooperation and Development (OECD) to foster greater use of renewables and efficiency (REN21, 2016).


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 476
Author(s):  
Kevin J. Warner ◽  
Glenn A. Jones

China and India are not only the two most populous nations on Earth, they are also two of the most rapidly growing economies. Historically, economic and social development have been subsidized by cheap and abundant fossil-fuels. Climate change from fossil-fuel emissions has resulted in the need to reduce fossil-fuel emissions in order to avoid catastrophic warming. If climate goals are achieved, China and India will have been the first major economies to develop via renewable energy sources. In this article, we examine the factors of projected population growth, available fossil-fuel reserves, and renewable energy installations required to develop scenarios in which both China and India may increase per capita energy consumption while remaining on trach to meet ambitious climate goals. Here, we show that China and India will have to expand their renewable energy infrastructure at unprecedented rates in order to support both population growth and development goals. In the larger scope of the literature, we recommend community-based approaches to microgrid and cookstove development in both China and India.


Author(s):  
J. L. Wang ◽  
J. Y. Wu ◽  
C. Y. Zheng

CCHP systems based on internal combustion engines have been widely accepted as efficient distributed energy resources systems. CCHP systems can be efficient mainly because that the waste heat of engines can be recovered and used. If the waste heat is not used, CCHP systems may not be beneficial choices. PV-wind systems can generate electricity without fuel consumption, but the electric output depends on the weather, which is not reliable. A PV-wind system can be integrated into a CCHP system to form a higher efficient energy system. Actually, a hybrid energy system based on PV-wind devices and internal combustion engines has been studied by many researchers. But the waste heat of the engine is seldom considered in the previous work. Researches show that, 20∼30% energy can be converted into electricity by a small size engine while more than 70% is released. If the waste heat is not recovered, the system cannot reach a high efficiency. This work aims to analyze a hybrid CCHP system with PV-wind devices. Internal combustion engines are the prime movers whose waste heat is recovered for house heating or driving absorption chillers. PV-wind devices are added to reduce the fuel consumption and total cost. The optimal design method and optimal operation strategy are proposed basing on hourly analyses. Influences of the device cost and fuel price on the optimal dispatch strategies are discussed. Results show that all of the excess energy from the PV-wind system is not worth being stored by the battery. The hybrid CCHP system can be more economical and higher efficient in the studied case.


2020 ◽  
Vol 19 (2) ◽  
pp. 204-223
Author(s):  
Izzet Alp Gul ◽  
Gülgün Kayakutlu ◽  
M. Özgür Kayalica

Technological improvements allow changing a significant part of the electricity generation investments to renewable energies. Especially in emerging markets and energy import-dependent countries, shift to renewable energy generation became more important to break the links of dependency. Pakistan relies on imported fossil fuels; however, the country’s experience and ambition about the renewable energy transition gain prominence in recent years. Considering the long-term life cycle of energy infrastructure investments, possible risk factors and their dynamic nature must be analysed before the financial decisions are taken. This article aims to propose a system dynamics model for the risk analysis of investment life cycle. In this study, possible risk factors are detected and discussed in different categories. The casual loop diagram of possible risk factors and risk assessment model are designed, and the impacts are analysed. Case study of the proposed model in Pakistan highlighted the importance of commercial risks. The results achieved through this study will guide investors, sector participants and policymakers to develop stable strategies for promoting renewable energy in the country. JEL: Q42, P48, O13


Sign in / Sign up

Export Citation Format

Share Document