scholarly journals Comparison of Aerodynamics Characteristics of NACA 0015 & NACA 4415

Author(s):  
Robiul Islam Rubel ◽  
Md. K. Uddin ◽  
Md. Zahidul Islam ◽  
Md. Rokunuzzaman

NACA 0015 and NACA 4415 aerofoil are most common four digits and broadly used aerodynamic shape. Both of the shapes are extensively used for various kind of applications including turbine blade, aircraft wing and so on. NACA 0015 is symmetrical and NACA 4415 is unsymmetrical in shape. Consequently, they have big one-of-a-kind in aerodynamic traits at the side of widespread differences of their utility and performance. Both of them undergo the same fluid principle while applied in any fluid medium giving dissimilar outcomes in aerodynamics behavior. On this work, experimental and numerical investigation of each NACA 0015 and NACA 4415 is done to decide their performance. For this purpose, aerofoil section is tested for a prevalence range attack of angle (AOA). The study addresses the performance of NACA 0015 and NACA 4415 and evaluates the dynamics of flow separation, lift, drag, pressure and velocity contour and so on. This additionally enables to layout new optimistic aerofoil, which is critical to enhance the efficiency and performance of an aircraft in terms of lift enhancement and drag reduction.

2017 ◽  
Vol 5 (11) ◽  
pp. 187-197
Author(s):  
Rubel R. I. ◽  
Uddin ◽  
Islam ◽  
Rokunuzzaman

NACA 0015 and NACA 4415 aerofoil are most common four digits and broadly used aerodynamic shape. Both of the shapes are extensively used for various kind of applications including turbine blade, aircraft wing and so on. NACA 0015 is symmetrical and NACA 4415 is unsymmetrical in shape. Consequently, they have big one-of-a-kind in aerodynamic traits at the side of widespread differences of their utility and performance. Both of them undergo the same fluid principle while applied in any fluid medium giving dissimilar outcomes in aerodynamics behavior. On this work, experimental and numerical investigation of each NACA 0015 and NACA 4415 is done to decide their performance. For this purpose, aerofoil section is tested for a prevalence range attack of angle (AOA). The study addresses the performance of NACA 0015 and NACA 4415 and evaluates the dynamics of flow separation, lift, drag, pressure and velocity contour and so on.


2021 ◽  
Vol 11 (2) ◽  
pp. 784
Author(s):  
Zhenxu Sun ◽  
Shuanbao Yao ◽  
Lianyi Wei ◽  
Yongfang Yao ◽  
Guowei Yang

The structural design of the streamlined shape is the basis for high-speed train aerodynamic design. With use of the delayed detached-eddy simulation (DDES) method, the influence of four different structural types of the streamlined shape on aerodynamic performance and flow mechanism was investigated. These four designs were chosen elaborately, including a double-arch ellipsoid shape, a single-arch ellipsoid shape, a spindle shape with a front cowcatcher and a double-arch wide-flat shape. Two different running scenes, trains running in the open air or in crosswind conditions, were considered. Results reveal that when dealing with drag reduction of the whole train running in the open air, it needs to take into account how air resistance is distributed on both noses and then deal with them both rather than adjust only the head or the tail. An asymmetrical design is feasible with the head being a single-arch ellipsoid and the tail being a spindle with a front cowcatcher to achieve the minimum drag reduction. The single-arch ellipsoid design on both noses could aid in moderating the transverse amplitude of the side force on the tail resulting from the asymmetrical vortex structures in the flow field behind the tail. When crosswind is considered, the pressure distribution on the train surface becomes more disturbed, resulting in the increase of the side force and lift. The current study reveals that the double-arch wide-flat streamlined design helps to alleviate the side force and lift on both noses. The magnitude of side force on the head is 10 times as large as that on the tail while the lift on the head is slightly above that on the tail. Change of positions where flow separation takes place on the streamlined part is the main cause that leads to the opposite behaviors of pressure distribution on the head and on the tail. Under the influence of the ambient wind, flow separation occurs about distinct positions on the train surface and intricate vortices are generated at the leeward side, which add to the aerodynamic loads on the train in crosswind conditions. These results could help gain insight on choosing a most suitable streamlined shape under specific running conditions and acquiring a universal optimum nose shape as well.


Author(s):  
Kenneth Van Treuren ◽  
Tyler Pharris ◽  
Olivia Hirst

The low-pressure turbine has become more important in the last few decades because of the increased emphasis on higher overall pressure and bypass ratios. The desire is to increase blade loading to reduce blade counts and stages in the low-pressure turbine of a gas turbine engine. Increased turbine inlet temperatures for newer cycles results in higher temperatures in the low-pressure turbine, especially the latter stages, where cooling technologies are not used. These higher temperatures lead to higher work from the turbine and this, combined with the high loadings, can lead to flow separation. Separation is more likely in engines operating at high altitudes and reduced throttle setting. At the high Reynolds numbers found at takeoff, the flow over a low-pressure turbine blade tends to stay attached. At lower blade Reynolds numbers (25,000 to 200,000), found during cruise at high altitudes, the flow on the suction surface of the low-pressure turbine blades is inclined to separate. This paper is a study on the flow characteristics of the L1A turbine blade at three low Reynolds numbers (60,000, 108,000, and 165,000) and 15 turbulence intensities (1.89% to 19.87%) in a steady flow cascade wind tunnel. With this data, it is possible to examine the impact of Reynolds number and turbulence intensity on the location of the initiation of flow separation, the flow separation zone, and the reattachment location. Quantifying the change in separated flow as a result of varying Reynolds numbers and turbulence intensities will help to characterize the low momentum flow environments in which the low-pressure turbine must operate and how this might impact the operation of the engine. Based on the data presented, it is possible to predict the location and size of the separation as a function of both the Reynolds number and upstream freestream turbulence intensity (FSTI). Being able to predict this flow behavior can lead to more effective blade designs using either passive or active flow control to reduce or eliminate flow separation.


Author(s):  
Lei Shi ◽  
Xiaowei Liu ◽  
Guoqiang He ◽  
Fei Qin ◽  
Xianggeng Wei ◽  
...  

AbstractNumerical integration simulations were performed on a ready-made central strut-based rocket-based combined-cycle (RBCC) engine operating in the ejector mode during the takeoff regime. The effective principles of various cowl lip positions and shapes on the inlet operation and the overall performance of the entire engine were investigated in detail. Under the static condition, reverse cowl lip rotation in a certain range was found to contribute comprehensive improvement to the RBCC inlet and the entire engine. However, the reverse rotation of the cowl lip contributed very little enhancement of the RBCC inlet under the low subsonic flight regime and induced extremely negative impacts in the high subsonic flight regime, especially in terms of a significant increase in the drag of the inlet. Changes to the cowl lip shape provided little improvement to the overall performance of the RBCC engine, merely shifting the location of the leeward area inside the RBCC inlet, as well as the flow separation and eddy, but not relieving or eliminating those phenomena. The results of this study indicate that proper cowl lip rotation offers an efficient variable geometry scheme for a RBCC inlet in the takeoff regime.


Sign in / Sign up

Export Citation Format

Share Document