scholarly journals Revealing Phenomena of Heat Energy, Levity, Gravity and Photons Characteristic Current to Light on Dealing Matter to Sub-Atom

Author(s):  
Mubarak Ali

Technology has almost reached to its climax but the basic understanding of science in many phenomena is still awaited. Scientific research reveals strong analogy between electron and photon. Atoms that execute electronic transitions, on absorbing heat energy, excite electrons. De-excitation of electron results into depicting energy in the shape of Gaussian distribution and where inertia is involved. The wavelength of photon at point of generation remains in inter-shell distance and atoms of all those elements that glitter perform like magician, throwing one and catching other, where an electron excites at shunt energy and configure trajectory under levity and de-excites at free fall configuring trajectory under gravity and silicon atom is a model system. In band gap of such atoms, heat energy of merged photons is cultivated and that shunt energy perturb the balance of inherent energy between electron and nucleus, which is not the case in atoms do not glitter. Uninterrupted confined inter-shell motion of electron results into photon that can travel immeasurable length. Such photons increase wavelength on decreasing frequency, propagate to hard X-ray, to visible spectrum, and to beyond. Here, I discuss that heat energy is due to merged photons, current due to photons wavelength in inter-shell distance and light photons wavelength in visible spectrum. Force of repulsion or attraction in certain materials engages phenomenon of levitism or gravitism instead of magnetism where inertia is exempted. All structural motifs and dynamics are subject to characteristic photons. A structural design delivers straight-forward application on coordinating overt photons or merged photons. The various gadgets, devices and instruments only operate energy as per need of necessity. Here, materials science explores matter to sub-atom while coordinating energy and devises science to describe.

Author(s):  
Mubarak Ali

Technology has reached to its climax but the basic understanding of science in many phenomena is still awaited. Scientific research reveals strong analogy between electron and photon. Atoms that execute electronic transitions, on absorbing heat energy, excite electrons. De-excitation of electron results into depicting energy in the shape of Gaussian distribution. The wavelength of photon at point of generation remains in inter-shell distance and atoms of all those elements that glitter perform like magician, throwing one and catching other, where an electron excites at shunt energy and configure trajectory under levity and de-excites at free fall configuring trajectory under gravity and silicon atom is a model system. In band gap of such atoms, heat energy of merged photons is cultivated and that shunt energy perturb the balance of inherent energy between electron and nucleus, which is not the case in atoms do not glitter. Uninterrupted confined inter-shell motion of electron results into photon that can travel immeasurable length. Such photons increase wavelength on decreasing frequency, propagate to hard X-ray, to visible spectrum, and to beyond. Here, I discuss that heat energy is due to merged photons, current due to photons wavelengths in inter-shell distance and light photons wavelengths in visible spectrum. Force of repulsion or attraction in certain materials engages phenomenon of levitism or gravitism instead of magnetism. All structural motifs and dynamics are subject to characteristic photons. A structural design delivers straight-forward application on coordinating overt photons or merged photons. The various gadgets, devices and instruments only operate energy as per need of necessity. Here, materials science explores matter to sub-atom while coordinating energy and devises science to describe.


Author(s):  
Mubarak Ali

Technology is in the way to reaching in its climax but the basic understanding of science in many phenomena is still awaited. Scientific research reveals strong analogy between electron and photon. Atoms that execute suitable electronic transitions, on absorbing heat energy at shunt level, excite their electrons. De-excitation of an electron under the gravitational force of its nucleus, where inertia is involved, results depicting energy in the shape like Gaussian distribution. The wavelength of photon remains in inter-state electron’s gap where the source of generating energy in wave-like fashion is due to electronic transitions under confined electron-dynamics; energy configures under electron’s trajectory in the excitation period is due to inertia-levitation-inertia behaviours while energy configures under electron’s trajectory in the de-excitation period is due to inertia-gravitation-inertia behaviours. Silicon atom is a model system of it. Uninterrupted confined inter-state electron-dynamics results into configure energy in a wave-like fashion that can travel immeasurable length and on interruption from the point of generation, it becomes a photon. Such photons increase wavelength on decreasing energy while travelling through inherently built gap of splitted inert gas atoms where they give light (glow) on reaching wavelength in the visible range. Here, I discuss that heat energy is due to merged photons, photons characteristic current are due to photons having wavelength in inter-state electron’s gap and light is due to photons, following the wavelength in the visible range. Force of repulsion or attraction in certain materials engages the phenomenon of levitism or gravitism where inertia is exempted. All structural motifs and dynamics are subjected to characteristic photons as long as atoms are under neutral behavior of field force. A structural design delivers straight-forward application on dealing photons at different wavelengths. Here, materials science explores matter at electronic level while absorbing heat energy and generating photon energy. Thus, devise science to describe.


Author(s):  
Mubarak Ali

Technology is in the way to reach in its climax but the basic understanding of science in many phenomena is still awaited despite the fact that nature justifies all those. Scientific research reveals strong analogy between electron and photon. Atoms that execute suitable electronic transitions, on absorbing heat energy at shunt level, excite their electrons. De-excitation of an electron under the gravitational force of its nucleus, where inertia is involved, results into depicting energy in the shape like Gaussian distribution. The wavelength of photon remains in inter-state electron’s gap where the source of generating energy in wave-like fashion is due to confined electron-dynamics of that atom eligible to execute electronic transition; energy configures under electron’s trajectory while excitation period is due to inertia-levitation-inertia behaviours and energy configures under electron’s trajectory while de-excitation period is due to inertia-gravitation-inertia behaviours. Silicon atom is a model system of it. Uninterrupted confined inter-state electron’s motion results into configure force energy that can travel immeasurable length where interruption from the point of generation termed it a photon. Such photons increase wavelength under decreasing energy. Here, I discuss that heat energy is due to merged photons or squeezed photons and photonic current is due to the configuring energy in inter-state electron’s gap under confined electron-dynamics of the atom. Force of repulsion or attraction in certain materials engages the phenomenon of levitism or gravitism where inertia is exempted. Structural motifs and dynamics are subjected to characteristic photons as long as atoms are dealing neutral behavior of field forces. A structural design delivers straight-forward application on dealing photons of certain wavelengths. Here, heat energy and photon energy explore matter at electron level. Thus, devise science to describe.


Author(s):  
Mubarak Ali

Technology is in the way to reach in its climax but the basic understanding of science in many phenomena is still awaited despite the fact that nature justifies all those. Scientific research reveals strong analogy between electron and photon. Atoms that execute suitable electronic transitions, on absorbing heat energy at shunt level, excite their electrons. De-excitation of an electron under the gravitational force of its nucleus, where inertia is involved, results into depicting energy in the shape like Gaussian distribution. The wavelength of photon remains in inter-state electron’s gap where the source of generating energy in wave-like fashion is due to confined electron-dynamics of that atom eligible to execute electronic transition; energy configures under electron’s trajectory while excitation period is due to inertia-levitation-inertia behaviours and energy configures under electron’s trajectory while de-excitation period is due to inertia-gravitation-inertia behaviours. Silicon atom is a model system of it. Uninterrupted confined inter-state electron’s motion results into configure force energy that can travel immeasurable length where interruption from the point of generation termed it a photon. Such photons increase wavelength under decreasing energy. Here, I discuss that heat energy is due to merged photons or squeezed photons and photonic current is due to the configuring energy in inter-state electron’s gap under confined electron-dynamics of the atom. Force of repulsion or attraction in certain materials engages the phenomenon of levitism or gravitism where inertia is exempted. Structural motifs and dynamics are subjected to characteristic photons as long as atoms are dealing neutral behavior of field forces. A structural design delivers straight-forward application on dealing photons of certain wavelengths. Here, heat energy and photon energy explore matter at electron level. Thus, devise science to describe.


Author(s):  
Mubarak Ali

Technology has nearly reached to its climax but the basic understanding of science in many phenomena is still awaited. Scientific research reveals strong analogy between electron and photon. Atoms that execute suitable electronic transitions, on absorbing heat energy at shunt level, excite their electrons. De-excitation of an electron, where inertia is involved, results depicting energy in the shape-like Gaussian distribution. The wavelength of photon at point of generation remains in inter-state electron’s gap distance and atoms of all those suitable elements that glitter perform like magician, throwing one and catching other, where an electron excites at shunt level of energy and configure trajectory under inertia-levity-inertia and de-excites at free fall configuring trajectory under inertia-gravity-inertia and silicon atom is a model system. In such atoms, heat energy of merged photons is cultivated and that shunt energy perturb the balance of inherent energy between electron and nucleus while balancing it via another electronic transition in reverse mode of the same atom. Uninterrupted confined inter-state electron-dynamics results into wave that can travel immeasurable length and on breaking inter-state electron-dynamics results into fixed length discrete energy wave called a photon. Such photons increase wavelength on decreasing frequency, propagate to hard X-ray, to visible spectrum, and to beyond. Here, I discuss that heat energy is due to merged photons, photons characteristic current are due to photons having wavelength in inter-state electron’s gap distance and light is due to photons having wavelength in visible spectrum. Force of repulsion or attraction in certain materials engages the phenomenon of levitism or gravitism instead of magnetism where inertia is no longer prevailed. All structural motifs and dynamics are subjected to characteristic photons as long as bearing the neutral behavior of the external forces. A structural design delivers straight-forward application on coordinating different energy shaped photons. The various gadgets, devices and instruments only operate energy as per need of necessity. Here, materials science explores matter to sub-atomic level while coordinating and interacting energy and devises science to describe.


Author(s):  
J. Bentley ◽  
E. A. Kenik

Instruments combining a 100 kV transmission electron microscope (TEM) with scanning transmission (STEM), secondary electron (SEM) and x-ray energy dispersive spectrometer (EDS) attachments to give analytical capabilities are becoming increasingly available and useful. Some typical applications in the field of materials science which make use of the small probe size and thin specimen geometry are the chemical analysis of small precipitates contained within a thin foil and the measurement of chemical concentration profiles near microstructural features such as grain boundaries, point defect clusters, dislocations, or precipitates. Quantitative x-ray analysis of bulk samples using EDS on a conventional SEM is reasonably well established, but much less work has been performed on thin metal foils using the higher accelerating voltages available in TEM based instruments.


Author(s):  
G.E. Ice

The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. With new x-ray optics these microprobes can achieve micron and submicron spatial resolutions. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature will have important applications to materials science. For example, x-ray fluorescent microanalysis of materials can reveal elemental distributions with greater sensitivity than alternative nondestructive probes. In materials, segregation and nonuniform distributions are the rule rather than the exception. Common interfaces to whichsegregation occurs are surfaces, grain and precipitate boundaries, dislocations, and surfaces formed by defects such as vacancy and interstitial configurations. In addition to chemical information, an x-ray diffraction microprobe can reveal the local structure of a material by detecting its phase, crystallographic orientation and strain.Demonstration experiments have already exploited the penetrating nature of an x-ray microprobe and its inherent elemental sensitivity to provide new information about elemental distributions in novel materials.


Author(s):  
Vinayak P. Dravid ◽  
V. Ravikumar ◽  
Richard Plass

With the advent of coherent electron sources with cold field emission guns (cFEGs), it has become possible to utilize the coherent interference phenomenon and perform “practical” electron holography. Historically, holography was envisioned to extent the resolution limit by compensating coherent aberrations. Indeed such work has been done with reasonable success in a few laboratories around the world. However, it is the ability of electron holography to map electrical and magnetic fields which has caught considerable attention of materials science community.There has been considerable theoretical work on formation of space charge on surfaces and internal interfaces. In particular, formation and nature of space charge have important implications for the performance of numerous electroceramics which derive their useful properties from electrically active grain boundaries. Bonnell and coworkers, in their elegant STM experiments provided the direct evidence for GB space charge and its sign, while Chiang et al. used the indirect but powerful technique of x-ray microchemical profiling across GBs to infer the nature of space charge.


Author(s):  
Judith M. Brock ◽  
Max T. Otten

A knowledge of the distribution of chemical elements in a specimen is often highly useful. In materials science specimens features such as grain boundaries and precipitates generally force a certain order on mental distribution, so that a single profile away from the boundary or precipitate gives a full description of all relevant data. No such simplicity can be assumed in life science specimens, where elements can occur various combinations and in different concentrations in tissue. In the latter case a two-dimensional elemental-distribution image is required to describe the material adequately. X-ray mapping provides such of the distribution of elements.The big disadvantage of x-ray mapping hitherto has been one requirement: the transmission electron microscope must have the scanning function. In cases where the STEM functionality – to record scanning images using a variety of STEM detectors – is not used, but only x-ray mapping is intended, a significant investment must still be made in the scanning system: electronics that drive the beam, detectors for generating the scanning images, and monitors for displaying and recording the images.


Author(s):  
Jonathan Ogle ◽  
Daniel Powell ◽  
Eric Amerling ◽  
Detlef Matthias Smilgies ◽  
Luisa Whittaker-Brooks

<p>Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.<b></b></p>


Sign in / Sign up

Export Citation Format

Share Document