scholarly journals Modelling Airport Pollutants Dispersion at High Resolution

Author(s):  
Claire Sarrat ◽  
Sébastien Aubry ◽  
Thomas Chaboud ◽  
Christine Lac

Local air quality is a major concern for the population regularly exposed to high levels of air pollution. The airport, mainly due to its aircraft engines activities during taxiing and take off, is often submitted to heterogeneous but important concentrations of NOx and PM. The study suggests an innovative approach to determine the air traffic impact on air quality at the scale of the airport, its runways and terminals, in order to be able to locate the persistent high concentrations spots. The pollutants concentrations at 10 m resolution and 1 s time step are calculated in order to identify the most affected areas of an airport platform. A real day of air traffic on a regional airport is simulated, using real data as aircraft trajectories (from radar streams). In order to estimate the aircraft emissions, the Air Transport Systems Evaluation Infrastructure (IESTA) is used. Regarding local air quality, IESTA relies on the non-hydrostatic meso-scale atmospheric model Meso-NH using grid-nesting capabilities with 3 domains, for this study. The detailed cartography of the airport distinguishes between grassland, parking and terminals, allowing to compute exchanges of heat, water and momentum between the different types of surfaces and the atmosphere as well as the interactions with the building using a drag force. The dynamic parameters like wind, temperature, turbulent kinetic energy and pollutants concentration are computed at 10 m resolution over the 2 × 4 km airport domain. The pollutants are considered in this preliminary study as passive tracers, without chemical reactions. This preliminary study aims at proving the feasibility of high scale modelling over an airport with state of the art physical models.

Author(s):  
Dan-Marius Mustață

The purpose of this article is to present a state of art implementation of air quality sensors in public transport stops. Effects on health due to different types of pollutants are summarized as well. Functional scope of the solutions, via warning messages displayed for passengers waiting at these stops, including a cross system communication between traffic management and public transport systems, are also focused. Analysis of existing sensor types from multiple view point including functions, types of measured pollutants, price ranges and comparisons are outlined.


2017 ◽  
Vol 122 (15) ◽  
pp. 8325-8344 ◽  
Author(s):  
M. A. Cameron ◽  
M. Z. Jacobson ◽  
S. R. H. Barrett ◽  
H. Bian ◽  
C. C. Chen ◽  
...  

2019 ◽  
Vol 22 (2) ◽  
pp. 255-270 ◽  
Author(s):  
Manuel D. Ortigueira ◽  
Valeriy Martynyuk ◽  
Mykola Fedula ◽  
J. Tenreiro Machado

Abstract The ability of the so-called Caputo-Fabrizio (CF) and Atangana-Baleanu (AB) operators to create suitable models for real data is tested with real world data. Two alternative models based on the CF and AB operators are assessed and compared with known models for data sets obtained from electrochemical capacitors and the human body electrical impedance. The results show that the CF and AB descriptions perform poorly when compared with the classical fractional derivatives.


Author(s):  
George L. Mesina ◽  
Nolan Anderson

The RELAP5-3D1 program solves a complex system of governing, closure and special process equations to model the underlying physics of nuclear power plants. For SQA (software quality assurance), the code must be verified and validated (V&V) to ensure proper performance before release to users. The physical models are validated against data from experiments and plants and verified against specifications for the computer code. In addition to physics, programs such as RELAP5-3D perform numerous other functions and processes that should also be checked to guarantee correct results. Functions include input, output, data management, and user interaction, while processes include restart, time-step backup, code coupling, and multi-case processing. Previous articles have covered the verification of the physical models, restart, and backup through extremely accurate and automated sequential verification applied on a comprehensive suite of test cases to ensure that code changes produced no unintended consequences. New developments have enabled the verification of multi-case and multi-deck processing. These features are frequently used in parameter and code sensitivity studies and therefore must be verified as working correctly. Both theory and application are presented.


2018 ◽  
Vol 99 (3) ◽  
pp. 306-308 ◽  
Author(s):  
M. Totaro ◽  
A. Porretta ◽  
A. Canale ◽  
E. Filippetti ◽  
A. Tulipani ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2099 ◽  
Author(s):  
H. Ariza ◽  
Antonio Correcher ◽  
Carlos Sánchez ◽  
Ángel Pérez-Navarro ◽  
Emilio García

Proton Exchange Membrane Fuel Cell (PEMFC) fuel cells is a technology successfully used in the production of energy from hydrogen, allowing the use of hydrogen as an energy vector. It is scalable for stationary and mobile applications. However, the technology demands more research. An important research topic is fault diagnosis and condition monitoring to improve the life and the efficiency and to reduce the operation costs of PEMFC devices. Consequently, there is a need of physical models that allow deep analysis. These models must be accurate enough to represent the PEMFC behavior and to allow the identification of different internal signals of a PEM fuel cell. This work presents a PEM fuel cell model that uses the output temperature in a closed loop, so it can represent the thermal and the electrical behavior. The model is used to represent a Nexa Ballard 1.2 kW fuel cell; therefore, it is necessary to fit the coefficients to represent the real behavior. Five optimization algorithms were tested to fit the model, three of them taken from literature and two proposed in this work. Finally, the model with the identified parameters was validated with real data.


Author(s):  
Charles Gray ◽  
G. D. Kittredge

The Environmental Protection Agency has completed a study of the impact of aircraft emissions on air quality and a study of the technological feasibility of controlling aircraft emissions including an analysis of the cost and time requirements of the various control approaches. The air quality study has determined the need for aircraft emission standards, and the control technology study has determined that control is feasible and cost effective given adequate development time.


Sign in / Sign up

Export Citation Format

Share Document