scholarly journals Coumarin-3-Amine as New Corrosion Inhibitor

Author(s):  
Ahmed Al-Amiery

Corrosion inhibitors are the natural or synthetic compounds that have the ability to inhibit the average of corrosion and reduce the damage of the mild steel. Enormous organic inhibitors nowadays employed in the corrosion domain but excluded due to costly. Comparatively cheap, and stable organic compound, namely 3-((4-nitrobenzylidene)amino)coumarin, have been utilized as an excellent corrosion inhibitor in hydrochloric acid for mild steel. The inhibition efficiency has been figured regarding to weight loss method. The corrosion inhibitor was identified according to spectroscopic techniques namely Fourier transform infrared and nuclear magnetic resonance in addition to micro-elemental analysis. Inhibition efficiency for the studied inhibitor was 71.4% that, at the highest studied concentration.

Author(s):  
Ahmed Al-Amiery

New corrosion inhibitor derived from coumarin-3-amine namely 3-((2-chlorobenzylidene)amino)coumarin was synthesized and characterized by CHN elemental analysis in addition to Fourier transform infrared and nuclear magnetic resonance techniques. The anti-corrosion ability of 3-((2-chlorobenzylidene)amino)coumarin to inhibit the impacts of corrosion has been demonstrated and damage reduction of the mild steel also. 3-((2-chlorobenzylidene)amino)coumarin, has been employed as a good corrosion inhibitor for mild steel in HCL solution. The efficiency of the inhibition was figured according to weight loss method and it was 74.6%.


2019 ◽  
Vol 40 ◽  
pp. 25-29
Author(s):  
Bishal Thapa ◽  
Dipak Kumar Gupta ◽  
Amar Prasad Yadav

The bark extract of Euphorbia royleana as a green corrosion inhibitor was studied in 1M HCl using weight-loss method and potential measurement. The results show that the bark extract of Euphorbia royleana is an effective anti-corrosion inhibitor of mild steel in acidic media. The corrosion rate decreases with the time of immersion. Weight loss experiment shows that the loss in weight decreases with the time of immersion and inhibition efficiency increases with the concentration of extract. It was observed that maximum inhibition efficiency is 99.60% in 100% concentration of extract. Potential measurement study shows that bark extracts act as a mixed type of inhibitor i.e. inhibits both anodically as well as cathodically. 


Author(s):  
Buraq T Sh AL-Mosawi ◽  
Mohammed M Sabri ◽  
Muhanad A Ahmed

Abstract In chemical manufactures, the corrosion inhibitors were added in order to reduce the corrosion of mild steel. Chemical molecules are often used on mild steel surfaces as portion of the latest finishing steps before painting and/or storage. Here, this work elucidated the utilization of an isatin derivative, namely, 3-((3-acetylphenyl)imino)indolin-2-one synergistic with zinc oxide nanoparticles for improving the impedance of mild steel (MS) against corrosion in 1.0 M hydrochloric acid using the weight loss method and scanning electron microscopy (SEM). Weight loss measurements demonstrated that the best 3-((3-acetylphenyl)imino)indolin-2-one concentration was 0.5 mM and the inhibition efficiency was 83% whereas the inhibition efficiency was 92% with addition of ZnO NPs. 3-((3-Acetylphenyl)imino)indolin-2-one retards the corrosion process at 300 K and demonstrates low inhibition efficiencies at 310, 320 and 330 K.


2016 ◽  
Vol 12 (12) ◽  
pp. 4593-4613
Author(s):  
Rekha. S ◽  
Kannan. K ◽  
Gnanavel. S

2-amino-6-nitrobenzothiazole(ANBT) was used as an inhibitor for the corrosion of mild steel in acid medium since the inhibition efficiency was low for that compound, 2,6-diaminobenzothiazole (DABT) and N-(6-aminobenzo [d] thiazol-2-y1) benzamide(ABTB) was synthesized,  and characterized by FT-IR, H1NMR, and C13NMR.The synthesized compound was tested as a corrosion inhibitor for mild steel in 1N HCl solution using weight loss, Potentiodynamic polarization, and AC impedance techniques. The inhibition efficiency was studied at the different time, temperature and acid concentration by weight loss method. The values of activation energy and free energy of adsorption of these compounds were also calculated, which reveals that the inhibitor was adsorbed on the mild steel by physisorption mechanism. Adsorption obeys Langmuir and Temkin adsorption isotherms. The results obtained by weight loss method revealed that the compound performed as a better inhibitor for mild steel in 1N HCl. Potentiodynamic polarization studies showed that the inhibitor acts as a mixed type inhibitor.AC impedance studies revealed that the corrosion process was controlled by charge transfer process. Surface analysis was studied using SEM and FT-IR.


2010 ◽  
Vol 7 (1) ◽  
pp. 325-330 ◽  
Author(s):  
R. Rajalakshmi ◽  
S. Subhashini

Addition of corrosion inhibitors is one of the widely used methods to control corrosion. In this work, an attempt has been made to explore the possibility of using dicycloimine hydrochloride (DCI) as an inhibitor on mild steel in 1 M HCl. The inhibition efficiency of DCI has been evaluated by conventional weight loss method and electrochemical polarization studies. Experimental results are fitted to various adsorption isotherms. Thermodynamic parameters have also been studied from temperature studies. The results reveal that DCI acts as an effective inhibitor (around 90% of IE) in HCl media.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 168
Author(s):  
N Z. Nor Hashim ◽  
K Kassim ◽  
F H. Zaidon

Two N-substituted thiosemicarbazone derivatives namely as 2-(4-chlorobenzylidene)-N-phenylhydrazinecarbothioamide and 2-benzylidene-N-phenylhydrazinecarbothioamide (L1 and L2, respectively) have been tested as corrosion inhibitors on mild steel in 1 M HCl. The ligands were synthesized and investigated using potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS).  The obtained results indicated that inhibition efficiency, (IE, %) L1 increased with increasing inhibitor concentrations which behaved as a good corrosion inhibitor compared to L2. The synthesized ligands were successfully characterized by melting point, elemental analysis (C, H, N, and S), Fourier-transform infrared spectroscopy (FT-IR) and NMR (1H and 13C) spectroscopy. The excellent inhibition effectiveness for both compounds on mild steel before and after immersion in 1 M HCl solution containing 40 ppm of L1 and L2 were also verified by scanning electron microscope (SEM). Based on potentiodynamic polarization results, it can be concluded that all investigated compounds are mixed-type inhibitors and obey the Langmuir adsorption isotherm. 


2019 ◽  
Vol 796 ◽  
pp. 112-120
Author(s):  
Mysara Eissa Mohyaldinn ◽  
Wai Lin ◽  
Ola Gawi ◽  
Mokhtar Che Ismail ◽  
Quosay A. Ahmed ◽  
...  

Most of the corrosion inhibitors that are used in industry contain chemicals that are harmful to health and environment. Corrosion inhibitors derived from green sources are, therefore, believed to be a good option for replacing the chemical corrosion inhibitors. In this work, a green oleochemical corrosion inhibitor derived from Jatropha Curcas is introduced. The paper discusses the methodology of deriving the corrosion inhibitor as well as the experimental test conducted for evaluating its corrosion inhibition efficiency. The new oleochemical corrosion inhibitor was derived via two reactions. Jatropha oil was firstly saponified with sodium hydroxide to yield gras acid and glycerol, which was then esterified with boron fluoride in presence of excess methanol to produce the oil methyl esters, which is used as oleo-chemical corrosion inhibitor. To evaluate the oleo-chemical corrosion inhibitor, the corrosion rate of mild steel in NaCl corrosive medium with CO2 is tested at static condition and two dynamic conditions, namely 500 and 1500 rpm. This is to simulate the transitional and turbulent flow in a pipeline. At each dynamic condition, the proposed corrosion inhibitor was tested at concentration dosages of 0, 50, 100, and 150 ppm. The experiments results revealed a good performance of the new oleochemical corrosion inhibitor. The inhibition efficiency was found to be highly affected by the concentration of corrosion inhibitor. Total corrosion inhibition of the mild steel was noticed by using 150 ppm at dynamic condition of 500 rpm.


Author(s):  
Dr. Abhay Singh

Abstract: DL-methionine has been investigated as inhibitor for the corrosion of mild steel in 1.0M hydrochloric acid solution using weight loss method and Scanning Electron Microscope (SEM) analysis. The investigated results showed that the inhibition efficiency increases with the increase in concentration of the inhibitor and decreases with the increase in temperature. SEM analysis indicated that the metal surface was in a better condition in the presence of inhibitor than the specimen exposed in the absence of the inhibitor. DL-methionine acted as a very good inhibitor and is also environmentally friendly, non -toxic, biodegradable and relatively cheap. Keywords: DL-methionine, mild steel, SEM, Corrosion inhibitor.


2010 ◽  
Vol 7 (3) ◽  
pp. 1090-1094 ◽  
Author(s):  
P. Matheswaran ◽  
A. K. Ramasamy

Benzotriazole an organic compounds has been studied as corrosion inhibition for mild steel in 1 N citric acid by weight loss method. The result showed that the corrosion inhibition efficiency of the compound was found to be varying with the temperature and acid concentration. Also it was found that the corrosion inhibition behaviour of benzotriazole is better when the concentration of inhibitor is increased. The kinetic treatment of the results shows first order kinetics.


2013 ◽  
Vol 864-867 ◽  
pp. 1342-1345
Author(s):  
Fu Rong Zhou ◽  
Hu Zhang ◽  
Guang Wu Du ◽  
Wen Hua Wang

Cyclohexylamine, morphine, ethanolamine, propiolic alcohol, seventeen alkenyl amide ethyl imidazoline, water depolymerization malaya acid anhydride, etc were chosen as the raw material of corrosion scale inhibitor in view of corrosion scaling reason and characteristic of blast furnace top gas pressure recovery turbine unit. The optimized formula of corrosion inhibitor have been obtained through orthogonal experiment. Corrosion and scale inhibitor performance were evaluated respectively by static weight-loss method, dynamic weight-loss method and calcium carbonate deposition. The results show that when these components are reasonable distributed, the corrosion effect is satisfied. When water depolymerization malaya acid anhydride is combined with the corrosion inhibitor, the corrosion and scale inhibition efficiency of composite inhibitor are more than 90%. Simulation blast furnace gas is adopted in dynamic simulation experiment, the corrosion inhibition efficiency is over 92%.


Sign in / Sign up

Export Citation Format

Share Document