scholarly journals Corrosion Inhibition Effect of Dicycloimine Hydrochloride (DCI) on Mild Steel in 1M HCl

2010 ◽  
Vol 7 (1) ◽  
pp. 325-330 ◽  
Author(s):  
R. Rajalakshmi ◽  
S. Subhashini

Addition of corrosion inhibitors is one of the widely used methods to control corrosion. In this work, an attempt has been made to explore the possibility of using dicycloimine hydrochloride (DCI) as an inhibitor on mild steel in 1 M HCl. The inhibition efficiency of DCI has been evaluated by conventional weight loss method and electrochemical polarization studies. Experimental results are fitted to various adsorption isotherms. Thermodynamic parameters have also been studied from temperature studies. The results reveal that DCI acts as an effective inhibitor (around 90% of IE) in HCl media.

Author(s):  
Ahmed Al-Amiery

Corrosion inhibitors are the natural or synthetic compounds that have the ability to inhibit the average of corrosion and reduce the damage of the mild steel. Enormous organic inhibitors nowadays employed in the corrosion domain but excluded due to costly. Comparatively cheap, and stable organic compound, namely 3-((4-nitrobenzylidene)amino)coumarin, have been utilized as an excellent corrosion inhibitor in hydrochloric acid for mild steel. The inhibition efficiency has been figured regarding to weight loss method. The corrosion inhibitor was identified according to spectroscopic techniques namely Fourier transform infrared and nuclear magnetic resonance in addition to micro-elemental analysis. Inhibition efficiency for the studied inhibitor was 71.4% that, at the highest studied concentration.


Author(s):  
Buraq T Sh AL-Mosawi ◽  
Mohammed M Sabri ◽  
Muhanad A Ahmed

Abstract In chemical manufactures, the corrosion inhibitors were added in order to reduce the corrosion of mild steel. Chemical molecules are often used on mild steel surfaces as portion of the latest finishing steps before painting and/or storage. Here, this work elucidated the utilization of an isatin derivative, namely, 3-((3-acetylphenyl)imino)indolin-2-one synergistic with zinc oxide nanoparticles for improving the impedance of mild steel (MS) against corrosion in 1.0 M hydrochloric acid using the weight loss method and scanning electron microscopy (SEM). Weight loss measurements demonstrated that the best 3-((3-acetylphenyl)imino)indolin-2-one concentration was 0.5 mM and the inhibition efficiency was 83% whereas the inhibition efficiency was 92% with addition of ZnO NPs. 3-((3-Acetylphenyl)imino)indolin-2-one retards the corrosion process at 300 K and demonstrates low inhibition efficiencies at 310, 320 and 330 K.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
G. Thenmozhi ◽  
P. Arockiasamy ◽  
R. Jaya Santhi

The oxidative chemical polymerizations of three isomers of aminophenol,ortho,meta, andpara(PoAP, PmAP, and PpAP), were performed in aqueous HCl using ammonium persulfate as an oxidant at 0–3°C. The synthesized polymers were characterized by employing elemental analysis, GPC, UV-VIS-NIR, FT-IR, XRD, and TGA. The corrosion inhibition effect of these three polymers on mild steel in 1 M HCl solution was studied by using electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy. These measurements reveal that the inhibition efficiency obtained by these polymers increased by increasing their concentration. The inhibition efficiency follows the order PpAP > PoAP > PmAP. The results further revealed that PpAP at a concentration of 250 mg/L furnishes maximum inhibition efficiency (96.5%). Polarization studies indicated that these three polymers act as the mixed type corrosion inhibitors.


Author(s):  
Ahmed A. Al-Amiery

The inhibition impacts of 1,10-Phenanthroline-5,6-diamine (PTDA) on mild steel in 1 M HCl solution were investigated through weight loss method. The inhibition efficiencies of PTDA increase with increase in PTDA concentration at the temperature 303. Weight loss method indicate that PTDA is an excellent inhibitor the inhibition efficiency of 81.5% at the maximum PTDA concentration of 0.5 g/L at the temperature 303K.


2019 ◽  
Vol 31 (12) ◽  
pp. 2745-2752
Author(s):  
P.K. Neena ◽  
N. Poongothai ◽  
P.R. Abhirami

This work aims to find the inhibition efficiency of Alstonia schoalris leaves on mild steel in 1N HCl medium. Corrosion monitoring was done using weight loss method, potentiodynamic polarization studies like Tafel and impedance studies and the results shows that the inhibitor acts well on mild steel in acidic medium. Polarization studies show that the inhibitor behaves like a mixed type. The inhibitor was characterized using FTIR which showed the presence of hetero atoms in the inhibitor molecule that get adsorbed on metal surface and provided better efficiency and that was proven by different adsorption isotherm. Zeta potential showed the stability of particle in the medium. Surface analysis of specimen was studied using FESEM, EDX and contact angle measurements. The analysis showed that the surface exposed to inhibitor is less corroded and contact angle measurement showed hydrophilic nature of the surface. Here, the inhibition is attributed to the electrostatic interaction of active sites on metal and inhibitor.


Author(s):  
Dr. Abhay Singh

Abstract: DL-methionine has been investigated as inhibitor for the corrosion of mild steel in 1.0M hydrochloric acid solution using weight loss method and Scanning Electron Microscope (SEM) analysis. The investigated results showed that the inhibition efficiency increases with the increase in concentration of the inhibitor and decreases with the increase in temperature. SEM analysis indicated that the metal surface was in a better condition in the presence of inhibitor than the specimen exposed in the absence of the inhibitor. DL-methionine acted as a very good inhibitor and is also environmentally friendly, non -toxic, biodegradable and relatively cheap. Keywords: DL-methionine, mild steel, SEM, Corrosion inhibitor.


2019 ◽  
Vol 40 ◽  
pp. 25-29
Author(s):  
Bishal Thapa ◽  
Dipak Kumar Gupta ◽  
Amar Prasad Yadav

The bark extract of Euphorbia royleana as a green corrosion inhibitor was studied in 1M HCl using weight-loss method and potential measurement. The results show that the bark extract of Euphorbia royleana is an effective anti-corrosion inhibitor of mild steel in acidic media. The corrosion rate decreases with the time of immersion. Weight loss experiment shows that the loss in weight decreases with the time of immersion and inhibition efficiency increases with the concentration of extract. It was observed that maximum inhibition efficiency is 99.60% in 100% concentration of extract. Potential measurement study shows that bark extracts act as a mixed type of inhibitor i.e. inhibits both anodically as well as cathodically. 


2010 ◽  
Vol 7 (3) ◽  
pp. 1090-1094 ◽  
Author(s):  
P. Matheswaran ◽  
A. K. Ramasamy

Benzotriazole an organic compounds has been studied as corrosion inhibition for mild steel in 1 N citric acid by weight loss method. The result showed that the corrosion inhibition efficiency of the compound was found to be varying with the temperature and acid concentration. Also it was found that the corrosion inhibition behaviour of benzotriazole is better when the concentration of inhibitor is increased. The kinetic treatment of the results shows first order kinetics.


Author(s):  
Nyirimbibi Daniela Kalisa ◽  
Theonestea Muhizi ◽  
Jean Jacques Yvesa Niyotwizera ◽  
Jean Baptistea Barutwanayo ◽  
Jean Boscoa Nkuranga

In this study, the use of green corrosion inhibitors extracted from coffee husks was investigated on mild steel materials in acidic medium. Phenolic compounds from coffee husks were extracted using acetone solvent, characterised and investigated for their corrosion inhibiting properties. The FTIR and 1H-NMR technique were carried out to characterise the present phenolic compounds extracted from purified coffee husks. The corrosion inhibition efficiency of phenolic compounds from coffee husks extract on mild steel in 1.0 M HCl was evaluated by using weight loss method. The obtained results showed that corrosion rates decreased with the increase of inhibitor concentration, temperature and immersion time. The  optimum inhibition efficiency of 86.5% at 25 ºC was obtained with a concentration of 400 mg/L (400 ppm) of coffee husks extract in two hours of experiment. The observed inhibition efficiency was attributed to the physical adsorption mechanism of phenolic compounds on mild steel surface through charged ion formation from protonation of lone pairs of oxygen in phenol or ionic dissociation of carboxylic acid functional group that formed a charged layer over mild steel surface. Furthermore, it was pointed out that the adsorption process obeyed the Langmuir adsorption  isotherm model at all investigated temperatures between 25 and 40 ºC. Keywords: Corrosion inhibitor, phenolic compounds, coffee husks extract, mild steel, adsorption


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Liang Liu ◽  
Ting-Ting Cao ◽  
Qi-Wei Zhang ◽  
Chong-Wei Cui

Circulating cooling water plays an important role in industrial water use. In this study, the corrosion inhibition effects of PBTCA, HEDP, and ATMP organic phosphorus inhibitors were investigated using the weight loss method by varying the dosage of inhibitors, ClO2 concentrations, and pH values on carbon steel in recirculating cooling water with a low concentration of ClO2 solution. The results showed that the three corrosion inhibitors had a satisfactory corrosion inhibition effect and that corrosion inhibition efficiency is positively correlated with the concentration of organic phosphorus inhibitors and pH. The average corrosion inhibition efficiency of the three inhibitors was about 80% at the concentration of inhibitors = 35 mg/L, pH = 9.0, and the concentration of ClO2 = 7.0 mg/L, of which the single-phosphorus molecular corrosion inhibitor proved to be the best inhibitor. When the ClO2 concentration was 7 mg/L, the corrosion inhibition efficiencies of the three corrosion inhibitors were relatively stable. Using the density functional theory (DFT) algorithm in the Gaussian 09 program, the optimization calculation was completed by the B3LYP/6-31G (d, p) method at the microlevel. The molecular structures of the three organic phosphorus inhibitors and the number of phosphorus-containing atoms were compared to the sustained-release properties. Organic phosphorus inhibitors, as an electronic buffer, not only provided electrons but also received electrons. They formed a complex with iron and zinc ions in water in order to attach to the surface of the carbon steel and to alleviate corrosion. In addition, the adsorption with a metal surface followed the Langmuir adsorption isotherm.


Sign in / Sign up

Export Citation Format

Share Document