scholarly journals Three-Dimensional Physical Model Test Study on Mining-Induced Strata Movement of Open-Pit Final Slope

Author(s):  
Kunpeng Gao ◽  
Guoxiang Yang ◽  
Nengxiong Xu

Strata and surface movement induced by mining under open-pit final slope is a huge threat to mine safety. Physical model test is an important method to study mining-induced strata and surface movement laws. Because of rock joints predominantly control rock mass deformation and failure, thus physical model test leaving out of consideration of rock joints is difficult to reflect the influence of rock joints on rock mass deformation. Therefore, this paper presents a three-dimensional physical model test considering simplified dominant rock joints. This test process includes the design of testing equipment, the construction of physical model with dominant rock joint sets, conduction of mining and deformation monitoring. And mining under eastern final slope of Yanqianshan iron mine was selected as a case to study the behavior of mining-induced strata and surface movement.

2011 ◽  
Vol 90-93 ◽  
pp. 2363-2371
Author(s):  
Bin Wei Xia ◽  
Ke Hu ◽  
Yi Yu Lu ◽  
Dan Li ◽  
Zu Yong Zhou

Physical models of layered rock mass with different dip angles are built by physical model test in accordance with the bias failure characteristics of surrounding rocks of layered rock mass in Gonghe Tunnel. Bias failure characteristics of surrounding rocks in thin-layered rock mass and influences of layered rock mass dip angle on stability of tunnel are studied. The research results show that failure characteristics of physical models generally coincide with those of surrounding rocks monitored from the tunnel site. The failure regions of surrounding rock perpendicular to the stratification planes are obviously larger than those parallel to. The stress distributions and failure characteristics in the surrounding rocks are similar to each physical model of different dip angles. The stress distributions and failure regions are all elliptic in shape, in which the major axis is in the direction perpendicular to the stratification planes while the minor axis is parallel to them. As a result, obvious bias failure of surrounding rocks has gradually formed. The physical model tests provide reliable basis for theoretical analysis on the failure mechanism of deep-buried layered rock mass.


2012 ◽  
Vol 594-597 ◽  
pp. 1975-1978
Author(s):  
Hai Jing Zhao ◽  
Dan Xun Li ◽  
Xing Kui Wang

Aimed at the representative project which is protected by the downstream sediment storage dam, three dimensional flow velocity field in local scour area around the separate bridge pier via physical model test was studied. The influences of shaping the eroded pit caused by the velocities in different directions were analyzed. The distribution results of flow velocity field in local scour pit near the pier protected by the sediment storage dam, deduced from the paper, will provide references for the defensive design of bridge projects.


2016 ◽  
Vol 34 (3) ◽  
pp. 847-866 ◽  
Author(s):  
Chuanbo Zhou ◽  
Shiwei Lu ◽  
Nan Jiang ◽  
Dingbang Zhang ◽  
Zhihua Zhang ◽  
...  

2021 ◽  
Vol 861 (5) ◽  
pp. 052091
Author(s):  
Lijun Wang ◽  
Peng Huang ◽  
Luoyi Chen ◽  
Jian Wang ◽  
Zhilong Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document