Study on Hydrological Simulation of Jin River Based on SWAT-X Model

2011 ◽  
Vol 84-85 ◽  
pp. 238-243
Author(s):  
Yu Jie Fang ◽  
Wen Bin Zhou ◽  
Ding Gui Luo

Hydrological simulation is the basis of water resources management and utilization. In this study, Soil and Water Assessment Tool (SWAT) model was applied to Jin River Basin for hydrological simulation on ArcView3.3 platform. The basic database of Jin river Basin was built using ArcGis9.2. Based on the LH-OAT parameter sensitivity analysis, the sensitive parameters of runoff were identified, including CN2, Gwqmn, rchrg_dp, ESCO, sol_z, SLOPE, SOL_AWC, sol_k, Gwrevap, and then model parameters related to runoff were calibrated and validated using data observed in weifang, yifeng, shanggao and gaoan hydrological stations during 2001-2008. The simulation showed that the simulated values were reasonably comparable to the observed data (Re<20%, R2 >0.7 and Nash-suttcliffe > 0.7), suggesting the validity of SWAT model in Jin River Basin.

Author(s):  
Timketa Adula Duguma

Abstract: In this study the semi-distributed model SWAT (Soil and Water Assessment Tool), were applied to evaluate stream flow of Didessa sub basin, which is one of the major sub basins in Abay river basin of Ethiopia. The study evaluated the quality of observed meteorological and hydrological data, established SWAT hydrological model, identified the most sensitive parameters, evaluated the best distribution for flow and developed peak flow for major tributary in the sub basin. The result indicated that the SWAT model developed for the sub basin evaluated at multi hydro-gauging stations and its performance certain with the statistical measures, coefficient about determination (R2) and also Nash coefficient (NS) with values ranging 0.62 to 0.8 and 0.6 to 0.8 respectively at daily time scale. The values of R2 and NS increases at monthly time scale and found ranging 0.75 to 0.92 and 0.71 to 0.91 respectively. Sensitivity analysis is performed to identify parameters those were most sensitive for the sub basin. CN2, GWQMN, CH_K, ALPHA_BNK and LAT_TIME are the most sensitive parameters in the sub basin. Finally, the peak flow for 2-10000 returns periods were determined after the best probability distribution is identified in EasyFit computer program.


2021 ◽  
Vol 02 (01) ◽  
pp. 001-008
Author(s):  
Farhad Sakhaee

Silver Creek Watershed has a basin of 1213.11 km2, located in Southern part of Illinois State (U.S.A), including highland silver lake and its east fork tributary. This research employs (Soil and Water Assessment Tool) to analyze the watershed as a function of land use parameters. Diff erent parameters have been considered in sensitivity analysis to determine the most sensitive parameters for fl ow rate calibration within diff erent hydrological response units (HRUs). Inputs parameters include precipitations and meteorological data such as solar radiation, wind speed and direction, temperature, and relative humidity. Model was calibrated with measured daily data for Troy gage station. The main objective was to simulate and calibrate the fl ow rate with SWAT model. Uncertainty analysis has been performed with SUFI-2 (Sequential Uncertainty Fitting Version-2) which is interfaced with SWAT applying iSWAT (generic coupling format program). Correlation between several stations within the domain has been calculated which showed a good range of Correlation (R2) values which means the pattern of meteorological data was evenly distributed. Finally based on the root mean of squares error (RMSE), (R2), NSE, and P-BIAS values, the accuracy of the calibration has been determined


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 860
Author(s):  
Nicu Constantin Tudose ◽  
Mirabela Marin ◽  
Sorin Cheval ◽  
Cezar Ungurean ◽  
Serban Octavian Davidescu ◽  
...  

This study aims to build and test the adaptability and reliability of the Soil and Water Assessment Tool hydrological model in a small mountain forested watershed. This ungauged watershed covers 184 km2 and supplies 90% of blue water for the Brașov metropolitan area, the second largest metropolitan area of Romania. After building a custom database at the forest management compartment level, the SWAT model was run. Further, using the SWAT-CUP software under the SUFI2 algorithm, we identified the most sensitive parameters required in the calibration and validation stage. Moreover, the sensitivity analysis revealed that the surface runoff is mainly influenced by soil, groundwater and vegetation condition parameters. The calibration was carried out for 2001‒2010, while the 1996‒1999 period was used for model validation. Both procedures have indicated satisfactory performance and a lower uncertainty of model results in replicating river discharge compared with observed discharge. This research demonstrates that the SWAT model can be applied in small ungauged watersheds after an appropriate parameterisation of its databases. Furthermore, this tool is appropriate to support decision-makers in conceiving sustainable watershed management. It also guides prioritising the most suitable measures to increase the river basin resilience and ensure the water demand under climate change.


2018 ◽  
Vol 49 (3) ◽  
pp. 908-923 ◽  
Author(s):  
Richarde Marques da Silva ◽  
José Carlos Dantas ◽  
Joyce de Araújo Beltrão ◽  
Celso A. G. Santos

Abstract A Soil and Water Assessment Tool (SWAT) model was used to model streamflow in a tropical humid basin in the Cerrado biome, southeastern Brazil. This study was undertaken in the Upper São Francisco River basin, because this basin requires effective management of water resources in drought and high-flow periods. The SWAT model was calibrated for the period of 1978–1998 and validated for 1999–2007. To assess the model calibration and uncertainty, four indices were used: (a) coefficient of determination (R2); (b) Nash–Sutcliffe efficiency (NS); (c) p-factor, the percentage of data bracketed by the 95% prediction uncertainty (95PPU); and (d) r-factor, the ratio of average thickness of the 95PPU band to the standard deviation of the corresponding measured variable. In this paper, average monthly streamflow from three gauges (Porto das Andorinhas, Pari and Ponte da Taquara) were used. The results indicated that the R2 values were 0.73, 0.80 and 0.76 and that the NS values were 0.68, 0.79 and 0.73, respectively, during the calibration. The validation also indicated an acceptable performance with R2 = 0.80, 0.76, 0.60 and NS = 0.61, 0.64 and 0.58, respectively. This study demonstrates that the SWAT model provides a satisfactory tool to assess basin streamflow and management in Brazil.


2019 ◽  
Vol 11 (4) ◽  
pp. 980-991 ◽  
Author(s):  
Aidi Huo ◽  
Xiaofan Wang ◽  
Yan Liang ◽  
Cheng Jiang ◽  
Xiaolu Zheng

Abstract The likelihood of future global water shortages is increasing and further development of existing operational hydrologic models is needed to maintain sustainable development of the ecological environment and human health. In order to quantitatively describe the water balance factors and transformation relations, the objective of this article is to develop a distributed hydrologic model that is capable of simulating the surface water (SW) and groundwater (GW) in irrigation areas. The model can be used as a tool for evaluating the long-term effects of water resource management. By coupling the Soil and Water Assessment Tool (SWAT) and MODFLOW models, a comprehensive hydrological model integrating SW and GW is constructed. The hydrologic response units for the SWAT model are exchanged with cells in the MODFLOW model. Taking the Heihe River Basin as the study area, 10 years of historical data are used to conduct an extensive sensitivity analysis on model parameters. The developed model is run for a 40-year prediction period. The application of the developed coupling model shows that since the construction of the Heihe reservoir, the average GW level in the study area has declined by 6.05 m. The model can accurately simulate and predict the dynamic changes in SW and GW in the downstream irrigation area of Heihe River Basin and provide a scientific basis for water management in an irrigation district.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 253 ◽  
Author(s):  
Dandan Guo ◽  
Hantao Wang ◽  
Xiaoxiao Zhang ◽  
Guodong Liu

Highly accurate and high-quality precipitation products that can act as substitutes for ground precipitation observations have important significance for research development in the meteorology and hydrology of river basins. In this paper, statistical analysis methods were employed to quantitatively assess the usage accuracy of three precipitation products, China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS), next-generation Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) and Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), for the Jinsha River Basin, a region characterized by a large spatial scale and complex terrain. The results of statistical analysis show that the three kinds of data have relatively high accuracy on the average grid scale and the correlation coefficients are all greater than 0.8 (CMADS:0.86, IMERG:0.88 and TMPA:0.81). The performance in the average grid scale is superior than that in grid scale. (CMADS: 0.86(basin), 0.6 (grid); IMERG:0.88 (basin),0.71(grid); TMPA:0.81(basin),0.42(grid)). According to the results of hydrological applicability analysis based on SWAT model, the three kinds of data fail to obtain higher accuracy on hydrological simulation. CMADS performs best (NSE:0.55), followed by TMPA (NSE:0.50) and IMERG (NSE:0.45) in the last. On the whole, the three types of satellite precipitation data have high accuracy on statistical analysis and average accuracy on hydrological simulation in the Jinsha River Basin, which have certain hydrological application potential.


Author(s):  
Antonio K. L. Silva ◽  
Adriano M. L. de Sousa ◽  
Joyse T. S. dos Santos ◽  
João M. Villela ◽  
Lucieta G. Martorano ◽  
...  

ABSTRACT Currently, an activity that has become strategic at a national level is the cultivation of oil palm (Elaeis guineensis) in the northeast region of the Pará State, in eastern Brazilian Amazon. However, the impacts of this crop expansion on the hydro-sedimentological cycle are still unknown. Therefore, this study estimated the impacts of oil palm crop expansion on sediment production in a sub-basin under consolidated use of this crop. The Soil and Water Assessment Tool (SWAT) model was applied in the Mariquita sub-basin, calibrated by the flow regionalization technique, using data measured in the field with a current meter. Simulation results indicated an increase in sediment production between the years 2008 and 2013, which can be attributed to the large reduction of areas of secondary vegetation that were replaced by pasture, oil palm and general agriculture. Oil palm areas had a lower average monthly sediment yield in the rainiest period in all simulated years, compared with areas of general agriculture and pasture.


2021 ◽  
Author(s):  
Cui Jian ◽  
Yue Zhao ◽  
Wenchao Sun ◽  
Yan Chen ◽  
Bo Wu ◽  
...  

Abstract Excessive phosphorus is an important cause of eutrophication. For river basin management, source identification and control of nonpoint source (NPS) pollution are difficult. In this study, to explore influences of hydrological conditions on phosphorus, the Soil and Water Assessment Tool (SWAT) model is applied to the Luanhe River basin in North China. Moreover, influences of the spatial scale of the livestock and poultry amount data on estimations of phosphorus loads are also discussed. The results show that applying town-level livestock and poultry amount data allows the model to perform better when estimating phosphorus loads, indicating that using data at a finer administrative level is necessary. For the typical wet year, the estimated annual phosphorus load was 2.6 times that in the typical dry year. Meanwhile, the contribution of pollution in summer to the annual load is greater in the wet year than that in the dry year. The spatial distributions of subbasins with high unit loads of phosphorus differ under different hydrological conditions, meaning that critical areas for pollution control vary with the wetness of each year. All these findings indicate that for pollution control at basin scale, considering the seasonal and interannual variabilities in hydrological conditions is highly demanded.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2039 ◽  
Author(s):  
Kenneth J. Tobin ◽  
Marvin E. Bennett

This study examined eight Great Plains moderate-sized (832 to 4892 km2) watersheds. The Soil and Water Assessment Tool (SWAT) autocalibration routine SUFI-2 was executed using twenty-three model parameters, from 1995 to 2015 in each basin, to identify highly sensitive parameters (HSP). The model was then run on a year-by-year basis, generating optimal parameter values for each year (1995 to 2015). HSP were correlated against annual precipitation (Parameter-elevation Regressions on Independent Slopes Model—PRISM) and root zone soil moisture (Soil MERGE—SMERGE 2.0) anomaly data. HSP with robust correlation (r > 0.5) were used to calibrate the model on an annual basis (2016 to 2018). Results were compared against a baseline simulation, in which optimal parameters were obtained by running the model for the entire period (1992 to 2015). This approach improved performance for annual simulations generated from 2016 to 2018. SMERGE 2.0 produced more robust results compared with the PRISM product. The main virtue of this approach is that it constrains parameter space, minimizesing equifinality and promotesing modeling based on more physically realistic parameter values.


2013 ◽  
Vol 340 ◽  
pp. 942-946 ◽  
Author(s):  
Kai Xu ◽  
Hui Qing Peng

The Soil and Water Assessment Tool (SWAT) was used to simulate runoff yield in Tao River Basin on ArcView GIS platform. The main objective was to validate the performance of SWAT and the feasibility of this model as a simulator of runoff in a catchment. The investigation was conducted using a 6-year historical runoff record from 2001 to 2008 (2001-2004 for calibration and 2005-2008 for validation). The simulated monthly runoff matched the observed values satisfactorily, with Re was less than 20%, R2 > 0.78 and Nash-suttclife (Ens)>0.8 for both calibration and validation period at 4 hydrological stations. These indicated that the simulation of runoff was reasonable, reflecting the validity of SWAT model in Tao River Basin.


Sign in / Sign up

Export Citation Format

Share Document