scholarly journals Analysis of the Angular Dependence of Time Delay in Gravitational Lensing

Author(s):  
Nicola Alchera ◽  
Marco Bonici ◽  
Roberta Cardinale ◽  
Alba Domi ◽  
Nicola Maggiore ◽  
...  

We consider an alternative formula for time delay in gravitational lensing. Imposing a smoothness condition on the gravitationally deformed paths followed by the photons from the source to the observer, we show that our formula displays the same degrees of freedom of the standard one. In addition to this, it is shown that the standard expression for time delay is recovered when small angles are involved. These two features strongly support the claim that the formula for time delay studied in this paper is the generalization to arbitrary angles of the standard one, which is valid at small angles. This could therefore result in a useful tool in view of softening the known discrepancy between the various estimates of the Hubble constant. As an aside, two interesting consequences of our proposal for time delay are discussed: the existence of a constraint on the gravitational potential generated by the lens and a formula for the mass of the lens in the case of central potential.

2020 ◽  
Vol 644 ◽  
pp. A162
Author(s):  
S. H. Suyu ◽  
S. Huber ◽  
R. Cañameras ◽  
M. Kromer ◽  
S. Schuldt ◽  
...  

We present the HOLISMOKES programme on strong gravitational lensing of supernovae (SNe) as a probe of SN physics and cosmology. We investigate the effects of microlensing on early-phase SN Ia spectra using four different SN explosion models. We find that distortions of SN Ia spectra due to microlensing are typically negligible within ten rest-frame days after a SN explosion (< 1% distortion within the 1σ spread and ≲10% distortion within the 2σ spread). This shows the great prospects of using lensed SNe Ia to obtain intrinsic early-phase SN spectra for deciphering SN Ia progenitors. As a demonstration of the usefulness of lensed SNe Ia for cosmology, we simulate a sample of mock lensed SN Ia systems that are expected to have accurate and precise time-delay measurements in the era of the Rubin Observatory Legacy Survey of Space and Time (LSST). Adopting realistic yet conservative uncertainties on their time-delay distances and lens angular diameter distances, of 6.6% and 5%, respectively, we find that a sample of 20 lensed SNe Ia would allow us to constrain the Hubble constant (H0) with 1.3% uncertainty in the flat ΛCDM cosmology. We find a similar constraint on H0 in an open ΛCDM cosmology, while the constraint degrades to 3% in a flat wCDM cosmology. We anticipate lensed SNe to be an independent and powerful probe of SN physics and cosmology in the upcoming LSST era.


Symmetry ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 246
Author(s):  
Nicola Alchera ◽  
Marco Bonici ◽  
Roberta Cardinale ◽  
Alba Domi ◽  
Nicola Maggiore ◽  
...  

2019 ◽  
Vol 490 (2) ◽  
pp. 1913-1927
Author(s):  
Jenny Wagner ◽  
Sven Meyer

ABSTRACT We determine the cosmic expansion rate from supernovae of type Ia to set up a data-based distance measure that does not make assumptions about the constituents of the universe, i.e. about a specific parametrization of a Friedmann cosmological model. The scale, determined by the Hubble constant H0, is the only free cosmological parameter left in the gravitational lensing formalism. We investigate to which accuracy and precision the lensing distance ratio D is determined from the Pantheon sample. Inserting D and its uncertainty into the lensing equations for given H0, especially the time-delay equation between a pair of multiple images, allows to determine lens properties, especially differences in the lensing potential (Δϕ), without specifying a cosmological model. We expand the luminosity distances into an analytic orthonormal basis, determine the maximum-likelihood weights for the basis functions by a globally optimal χ2-parameter estimation, and derive confidence bounds by Monte Carlo simulations. For typical strong lensing configurations between z = 0.5 and 1.0, Δϕ can be determined with a relative imprecision of 1.7 per cent, assuming imprecisions of the time delay and the redshift of the lens on the order of 1 per cent. With only a small, tolerable loss in precision, the model-independent lens characterisation developed in this paper series can be generalised by dropping the specific Friedmann model to determine D in favour of a data-based distance ratio. Moreover, for any astrophysical application, the approach presented here, provides distance measures for z ≤ 2.3 that are valid in any homogeneous, isotropic universe with general relativity as theory of gravity.


Author(s):  
Marco Bonici ◽  
Nicola Alchera ◽  
Nicola Maggiore

One application of the Cosmological Gravitational Lensing in General Relativity is the measurement of the Hubble constant H_0 using the time delay Delta t between multiple images of lensed quasars. This method has already been applied, obtaining a value of H_0 compatible with that obtained from the SNe 1A, but non compatible with that obtained studying the anisotropies of the CMB. This difference could be a statistical fluctuation or an indication of new physics beyond the Standard Model of Cosmology, so it desirable to improve the precision of the measurements. At the current technological capabilities it is possible to obtain H_0 to a percent level uncertainty, so a more accurate theoretical model could be necessary in order to increase the precision about the determination of H_0. The actual formula which relates Delta t with H_0 is approximated; in this paper we expose a proposal to go beyond the previous analysis and, within the context of a new model, we obtain a more precise formula than that present in the Literature.


2020 ◽  
Vol 497 (1) ◽  
pp. L56-L61 ◽  
Author(s):  
Tao Yang ◽  
Simon Birrer ◽  
Bin Hu

ABSTRACT Strong gravitational lensing has been a powerful probe of cosmological models and gravity. To date, constraints in either domain have been obtained separately. We propose a new methodology through which the cosmological model, specifically the Hubble constant, and post-Newtonian parameter can be simultaneously constrained. Using the time-delay cosmography from strong lensing combined with the stellar kinematics of the deflector lens, we demonstrate that the Hubble constant and post-Newtonian parameter are incorporated in two distance ratios that reflect the lensing mass and dynamical mass, respectively. Through the re-analysis of the four publicly released lenses distance posteriors from the H0LiCOW (H0 Lenses in COSMOGRAIL’s Wellspring) collaboration, the simultaneous constraints of Hubble constant and post-Newtonian parameter are obtained. Our results suggest no deviation from the general relativity; $\gamma _{\tt {PPN}}=0.87^{+0.19}_{-0.17}$ with a Hubble constant that favours the local Universe value, $H_0=73.65^{+1.95}_{-2.26}$ km s−1 Mpc−1. Finally, we forecast the robustness of gravity tests by using the time-delay strong lensing for constraints we expect in the next few years. We find that the joint constraint from 40 lenses is able to reach the order of $7.7{{\ \rm per\ cent}}$ for the post-Newtonian parameter and $1.4{{\ \rm per\ cent}}$ for the Hubble constant.


2020 ◽  
Vol 639 ◽  
pp. A57 ◽  
Author(s):  
Nikki Arendse ◽  
Radosław J. Wojtak ◽  
Adriano Agnello ◽  
Geoff C.-F. Chen ◽  
Christopher D. Fassnacht ◽  
...  

Context. Persistent tension between low-redshift observations and the cosmic microwave background radiation (CMB), in terms of two fundamental distance scales set by the sound horizon rd and the Hubble constant H0, suggests new physics beyond the Standard Model, departures from concordance cosmology, or residual systematics. Aims. The role of different probe combinations must be assessed, as well as of different physical models that can alter the expansion history of the Universe and the inferred cosmological parameters. Methods. We examined recently updated distance calibrations from Cepheids, gravitational lensing time-delay observations, and the tip of the red giant branch. Calibrating the baryon acoustic oscillations and type Ia supernovae with combinations of the distance indicators, we obtained a joint and self-consistent measurement of H0 and rd at low redshift, independent of cosmological models and CMB inference. In an attempt to alleviate the tension between late-time and CMB-based measurements, we considered four extensions of the standard ΛCDM model. Results. The sound horizon from our different measurements is rd = (137 ± 3stat. ± 2syst.) Mpc based on absolute distance calibration from gravitational lensing and the cosmic distance ladder. Depending on the adopted distance indicators, the combined tension in H0 and rd ranges between 2.3 and 5.1 σ, and it is independent of changes to the low-redshift expansion history. We find that modifications of ΛCDM that change the physics after recombination fail to provide a solution to the problem, for the reason that they only resolve the tension in H0, while the tension in rd remains unchanged. Pre-recombination extensions (with early dark energy or the effective number of neutrinos Neff = 3.24 ± 0.16) are allowed by the data, unless the calibration from Cepheids is included. Conclusions. Results from time-delay lenses are consistent with those from distance-ladder calibrations and point to a discrepancy between absolute distance scales measured from the CMB (assuming the standard cosmological model) and late-time observations. New proposals to resolve this tension should be examined with respect to reconciling not only the Hubble constant but also the sound horizon derived from the CMB and other cosmological probes.


2012 ◽  
Vol 8 (S289) ◽  
pp. 344-347
Author(s):  
Yong Tian ◽  
Chung-Ming Ko ◽  
Mu-Chen Chiu

AbstractThe Hubble constant can be determined from the time delay of gravitationally lensed systems. We adopt Te Ve S as the relativistic version of Modified Newtonian Dynamics to study gravitational lensing phenomena and evaluate the Hubble constant from the derived time-delay formula. We test our method on observed quasar lensing published in the literature. Three candidates are suitable for our study, HE 2149-2745, FBQ J0951+2635, and SBS 0909+532.


2002 ◽  
Vol 568 (2) ◽  
pp. 488-499 ◽  
Author(s):  
Masamune Oguri ◽  
Atsushi Taruya ◽  
Yasushi Suto ◽  
Edwin L. Turner

2018 ◽  
Vol 617 ◽  
pp. A140 ◽  
Author(s):  
Olivier Wertz ◽  
Bastian Orthen ◽  
Peter Schneider

The central ambition of the modern time delay cosmography consists in determining the Hubble constant H0 with a competitive precision. However, the tension with H0 obtained from the Planck satellite for a spatially flat ΛCDM cosmology suggests that systematic errors may have been underestimated. The most critical of these errors probably comes from the degeneracy existing between lens models that was first formalized by the well-known mass-sheet transformation (MST). In this paper, we assess to what extent the source position transformation (SPT), a more general invariance transformation which contains the MST as a special case, may affect the time delays predicted by a model. To this aim, we have used pySPT, a new open-source python package fully dedicated to the SPT that we present in a companion paper. For axisymmetric lenses, we find that the time delay ratios between a model and its SPT-modified counterpart simply scale like the corresponding source position ratios, Δtˆ/Δt ≈ βˆ/β, regardless of the mass profile and the isotropic SPT. Similar behavior (almost) holds for nonaxisymmetric lenses in the double image regime and for opposite image pairs in the quadruple image regime. In the latter regime, we also confirm that the time delay ratios are not conserved. In addition to the MST effects, the SPT-modified time delays deviate in general no more than a few percent for particular image pairs, suggesting that its impact on time delay cosmography seems not be as crucial as initially suspected. We also reflected upon the relevance of the SPT validity criterion and present arguments suggesting that it should be reconsidered. Even though a new validity criterion would affect the time delays in a different way, we expect from numerical simulations that our conclusions will remain unchanged.


Sign in / Sign up

Export Citation Format

Share Document