scholarly journals Higher Order Geometric Theory of Information and Heat based on Poly-Symplectic Geometry of Souriau Lie Groups Thermodynamics and Their Contextures

Author(s):  
Frederic Barbaresco

We introduce poly-symplectic extension of Souriau Lie groups Thermodynamics based on higher-order model of statistical physics introduced by R.S. Ingarden. This extended model could be used for small data analytics and Machine Learning on Lie groups. Souriau Geometric Theory of Heat is well adapted to describe density of probability (Maximum Entropy Gibbs density) of data living on groups or on homogeneous manifolds. For Small Data Analytics (Rarified Gases , sparse statistical survey,…), density of maximum entropy should consider Higher Order Moments constraints (Gibbs density is not only defined by first moment but fluctuations request 2nd order and higher moments) as introduced by R.S. Ingarden. We use Poly-sympletic model introduced by Christian Günther, replacing the symplectic form by a vector-valued form. The poly-symplectic approach generalizes the Noether theorem, the existence of momentum mappings, the Lie algebra structure of the space of currents, the (non-)equivariant cohomology and the classification of G-homogeneous systems. The formalism is covariant, i.e. no special coordinates or coordinate systems on the parameter space are used to construct the Hamiltonian equations. We underline the contextures of these models, and the process to build these generic structures.

Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 840 ◽  
Author(s):  
Frédéric Barbaresco

We introduce poly-symplectic extension of Souriau Lie groups thermodynamics based on higher-order model of statistical physics introduced by Ingarden. This extended model could be used for small data analytics and machine learning on Lie groups. Souriau geometric theory of heat is well adapted to describe density of probability (maximum entropy Gibbs density) of data living on groups or on homogeneous manifolds. For small data analytics (rarified gases, sparse statistical surveys, …), the density of maximum entropy should consider higher order moments constraints (Gibbs density is not only defined by first moment but fluctuations request 2nd order and higher moments) as introduced by Ingarden. We use a poly-sympletic model introduced by Christian Günther, replacing the symplectic form by a vector-valued form. The poly-symplectic approach generalizes the Noether theorem, the existence of moment mappings, the Lie algebra structure of the space of currents, the (non-)equivariant cohomology and the classification of G-homogeneous systems. The formalism is covariant, i.e., no special coordinates or coordinate systems on the parameter space are used to construct the Hamiltonian equations. We underline the contextures of these models, and the process to build these generic structures. We also introduce a more synthetic Koszul definition of Fisher Metric, based on the Souriau model, that we name Souriau-Fisher metric. This Lie groups thermodynamics is the bedrock for Lie group machine learning providing a full covariant maximum entropy Gibbs density based on representation theory (symplectic structure of coadjoint orbits for Souriau non-equivariant model associated to a class of co-homology).


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 250
Author(s):  
Frédéric Barbaresco ◽  
Jean-Pierre Gazeau

For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation. Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis. The modern development of Fourier analysis during XXth century has explored the generalization of Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups (by associating coherent states to group representations that are square integrable over a homogeneous space). The name of Joseph Fourier is also inseparable from the study of mathematics of heat. Modern research on Heat equation explores geometric extension of classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. The heat equation for a general volume form that not necessarily coincides with the Riemannian one is useful in sub-Riemannian geometry, where a canonical volume only exists in certain cases. A new geometric theory of heat is emerging by applying geometric mechanics tools extended for statistical mechanics, for example, the Lie groups thermodynamics.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Huiju Wang ◽  
Pengcheng Niu

AbstractIn this paper, we establish weighted higher order exponential type inequalities in the geodesic space {({X,d,\mu})} by proposing an abstract higher order Poincaré inequality. These are also new in the non-weighted case. As applications, we obtain a weighted Trudinger’s theorem in the geodesic setting and weighted higher order exponential type estimates for functions in Folland–Stein type Sobolev spaces defined on stratified Lie groups. A higher order exponential type inequality in a connected homogeneous space is also given.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Liu ◽  
Jianfeng Dong

Assume thatGis a stratified Lie group andQis the homogeneous dimension ofG. Let-Δbe the sub-Laplacian onGandW≢0a nonnegative potential belonging to certain reverse Hölder classBsfors≥Q/2. LetL=-Δ+Wbe a Schrödinger operator on the stratified Lie groupG. In this paper, we prove the boundedness of some integral operators related toL, such asL-1∇2,L-1W, andL-1(-Δ) on the spaceBMOL(G).


1988 ◽  
Vol 31 (2) ◽  
pp. 194-199
Author(s):  
L. Magalhães

AbstractIn this paper we give a description of:(1) the Hopf algebra structure of k*(G; L) when G is a compact, connected Lie group and L is a ring of type Q(P) so that H*(G; L) is torsion free;(2) the algebra structure of k*(G2; L) for L = Z2 or Z.


2019 ◽  
Vol 2 (2) ◽  
pp. 73-86 ◽  
Author(s):  
Yingjie Yang ◽  
Sifeng Liu ◽  
Naiming Xie

Purpose The purpose of this paper is to propose a framework for data analytics where everything is grey in nature and the associated uncertainty is considered as an essential part in data collection, profiling, imputation, analysis and decision making. Design/methodology/approach A comparative study is conducted between the available uncertainty models and the feasibility of grey systems is highlighted. Furthermore, a general framework for the integration of grey systems and grey sets into data analytics is proposed. Findings Grey systems and grey sets are useful not only for small data, but also big data as well. It is complementary to other models and can play a significant role in data analytics. Research limitations/implications The proposed framework brings a radical change in data analytics. It may bring a fundamental change in our way to deal with uncertainties. Practical implications The proposed model has the potential to avoid the mistake from a misleading data imputation. Social implications The proposed model takes the philosophy of grey systems in recognising the limitation of our knowledge which has significant implications in our way to deal with our social life and relations. Originality/value This is the first time that the whole data analytics is considered from the point of view of grey systems.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 90 ◽  
Author(s):  
Giovanni Bazzoni ◽  
Alberto Raffero

Motivated by known results in locally conformal symplectic geometry, we study different classes of G 2 -structures defined by a locally conformal closed 3-form. In particular, we provide a complete characterization of invariant exact locally conformal closed G 2 -structures on simply connected Lie groups, and we present examples of compact manifolds with different types of locally conformal closed G 2 -structures.


Author(s):  
Paul Cerrato ◽  
John Halamka
Keyword(s):  
Big Data ◽  

Sign in / Sign up

Export Citation Format

Share Document