scholarly journals Insights Into Machining of a β Titanium Biomedical Alloy from Chip Microstructures

Author(s):  
Damon Kent ◽  
Rizwan Rahman Rashid ◽  
Michael Bermingham ◽  
Hooyar Attar ◽  
Shoujin Sun ◽  
...  

New metastable β titanium alloys are receiving increasing attention due to their excellent biomechanical properties and machinability is critical to their uptake. In this study machining chip microstructure have been investigated to gain an understanding of strain and temperature fields during cutting. For higher cutting speeds, ≥60 m/min, the chips have segmented morphologies characterised by a serrated appearance. High levels of strain in the primary shear zone promote formation of expanded shear band regions between segments which exhibit intensive refinement of the β phase down to grain sizes below 100 nm. The presence of both α and β phases across the expanded shear band suggests that temperatures during cutting are in the range of 400-600°C. For the secondary shear zone, very large strains at the cutting interface result in heavily refined and approximately equiaxed nanocrystalline β grains with sizes around 20-50 nm, while further from the interface the β grains become highly elongated in the shear direction. An absence of the α phase in the region immediately adjacent to the cutting interface indicates recrystallization during cutting and temperatures in excess of the 720°C β transus temperature.

Author(s):  
Damon Kent ◽  
Rizwan Rahman Rashid ◽  
Michael Bermingham ◽  
Hooyar Attar ◽  
Shoujin Sun ◽  
...  

New metastable β titanium alloys are receiving increasing attention due to their excellent biomechanical properties and machinability is critical to their uptake. In this study machining chip microstructure have been investigated to gain an understanding of strain and temperature fields during cutting. For higher cutting speeds, ≥60 m/min, the chips have segmented morphologies characterised by a serrated appearance. High levels of strain in the primary shear zone promote formation of expanded shear band regions between segments which exhibit intensive refinement of the β phase down to grain sizes below 100 nm. The presence of both α and β phases across the expanded shear band suggests that temperatures during cutting are in the range of 400–600 °C. For the secondary shear zone, very large strains at the cutting interface result in heavily refined and approximately equiaxed nanocrystalline β grains with sizes around 20–50 nm, while further from the interface the β grains become highly elongated in the shear direction. An absence of the α phase in the region immediately adjacent to the cutting interface indicates recrystallization during cutting and temperatures in excess of the 720 °C β transus temperature.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 710 ◽  
Author(s):  
Damon Kent ◽  
Rizwan Rahman Rashid ◽  
Michael Bermingham ◽  
Hooyar Attar ◽  
Shoujin Sun ◽  
...  

New metastable β titanium alloys are receiving increasing attention due to their excellent biomechanical properties and machinability is critical to their uptake. In this study, machining chip microstructure has been investigated to gain an understanding of strain and temperature fields during cutting. For higher cutting speeds, ≥60 m/min, the chips have segmented morphologies characterised by a serrated appearance. High levels of strain in the primary shear zone promote formation of expanded shear band regions between segments which exhibit intensive refinement of the β phase down to grain sizes below 100 nm. The presence of both α and β phases across the expanded shear band suggests that temperatures during cutting are in the range of 400–600 °C. For the secondary shear zone, very large strains at the cutting interface result in heavily refined and approximately equiaxed nanocrystalline β grains with sizes around 20–50 nm, while further from the interface the β grains become highly elongated in the shear direction. An absence of the α phase in the region immediately adjacent to the cutting interface indicates recrystallization during cutting and temperatures in excess of the 720 °C β transus temperature.


2018 ◽  
Vol 941 ◽  
pp. 1443-1449 ◽  
Author(s):  
María Cecilia Poletti ◽  
Ricardo Buzolin ◽  
Sanjev Kumar ◽  
Peng Wang ◽  
Thierry Franz Jules Simonet-Fotso

This work deals with the analysis and modelling of the microstructural evolution of the metastable titanium alloy Ti-5Al-5V-5Mo-3Cr during hot deformation up to moderate and large strains. Experimental flow curves and deformed samples are obtained by hot compression and hot torsion tests using a Gleeble ® 3800 device. The samples are deformed above and below the beta transus temperature and in a wide range of strain rates. Microstructures are characterized after deformation and in-situ water quenching using light optical and scanning electron microscopy and electron back scattered diffraction (EBSD). Dynamic recovery of the beta phase is found to be the main deformation mechanism up to moderated strains. By increasing the strain, continuous dynamic recrystallization (cDRX) is confirmed by the progressive conversion of low angle boundaries into high-angle boundaries. Alpha phase plays a secondary role in the deformation of the material by pinning the movement of beta high angle grain boundaries (HAGB). The evolution of the microstructure is modelled using dislocation density as internal variable in the single β field.


2021 ◽  
pp. 1-6
Author(s):  
Saurabh Rai ◽  
◽  
Kalyani Panigrahi ◽  

Tensile testing on metastable beta alloy with various microstructures was carried out in this study. Beta 21S is a metastable alloy that exhibits a wide range of material characteristics depending on the processing techniques used. Three different sheets that have been used in this paper which has the same substance but three different microstructures. At a strain rate of 0.001/s, the tensile test was done on a single sheet at five different temperatures. The sheet has developed varied microstructures, the tensile nature of the material varies the alloy’s characteristics. Mechanical characteristics for 400°C, 500°C, 600°C, and 7000°C are described for 21S sheets. The alpha phase sheet elongated at room temperature by 1-3 %, whereas the pure beta phase sheet elongated by 22-24 %. There is a significant improvement in the extension of the sheet with the variation in temperature for the alpha phase. The elongation of the pure beta phase does not alter as the temperature rises. The fracture surface was tested at all temperatures and the optimal temperature for forming the sheet has been determined


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3255
Author(s):  
Lenka Kunčická ◽  
Michal Jambor ◽  
Adam Weiser ◽  
Jiří Dvořák

Cu–Zn–Pb brasses are popular materials, from which numerous industrially and commercially used components are fabricated. These alloys are typically subjected to multiple-step processing—involving casting, extrusion, hot forming, and machining—which can introduce various defects to the final product. The present study focuses on the detailed characterization of the structure of a brass fitting—i.e., a pre-shaped medical gas valve, produced by hot die forging—and attempts to assess the factors beyond local cracking occurring during processing. The analyses involved characterization of plastic flow via optical microscopy, and investigations of the phenomena in the vicinity of the crack, for which we used scanning and transmission electron microscopy. Numerical simulation was implemented not only to characterize the plastic flow more in detail, but primarily to investigate the probability of the occurrence of cracking based on the presence of stress. Last, but not least, microhardness in specific locations of the fitting were examined. The results reveal that the cracking occurring in the location with the highest probability of the occurrence of defects was most likely induced by differences in the chemical composition; the location the crack in which developed exhibited local changes not only in chemical composition—which manifested as the presence of brittle precipitates—but also in beta phase depletion. Moreover, as a result of the presence of oxidic precipitates and the hard and brittle alpha phase, the vicinity of the crack exhibited an increase in microhardness, which contributed to local brittleness.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255815
Author(s):  
Lukas Schilberg ◽  
Sanne Ten Oever ◽  
Teresa Schuhmann ◽  
Alexander T. Sack

The evaluation of transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) promises valuable information about fundamental brain related mechanisms and may serve as a diagnostic tool for clinical monitoring of therapeutic progress or surgery procedures. However, reports about spontaneous fluctuations of MEP amplitudes causing high intra-individual variability have led to increased concerns about the reliability of this measure. One possible cause for high variability of MEPs could be neuronal oscillatory activity, which reflects fluctuations of membrane potentials that systematically increase and decrease the excitability of neuronal networks. Here, we investigate the dependence of MEP amplitude on oscillation power and phase by combining the application of single pulse TMS over the primary motor cortex with concurrent recordings of electromyography and electroencephalography. Our results show that MEP amplitude is correlated to alpha phase, alpha power as well as beta phase. These findings may help explain corticospinal excitability fluctuations by highlighting the modulatory effect of alpha and beta phase on MEPs. In the future, controlling for such a causal relationship may allow for the development of new protocols, improve this method as a (diagnostic) tool and increase the specificity and efficacy of general TMS applications.


1994 ◽  
Vol 9 (6) ◽  
pp. 1392-1396 ◽  
Author(s):  
Eric M. Taleff ◽  
Oleg D. Sherby

A Mg-6.5 wt. % Li alloy containing 80% hep alpha phase and 20% bcc beta phase was processed to achieve an average grain size of 5.9 μm. Strain-rate-change tests were performed in the temperature range from 398 K to 573 K. Two types of creep behavior were observed. A stress exponent of five, obtained at low temperatures and high stresses, is attributed to a diffusion-controlled dislocation creep process in the alpha matrix. A stress exponent of three, obtained at high temperatures and low stresses, is attributed to a solute-drag controlled dislocation creep process in the alpha matrix.


2020 ◽  
Vol 902 ◽  
pp. 97-102
Author(s):  
Tran Trong Quyet ◽  
Pham Tuan Nghia ◽  
Nguyen Thanh Toan ◽  
Tran Duc Trong ◽  
Luong Hong Sam ◽  
...  

This paper presents a prediction of cutting temperature in turning process, using a continuous cutting model of Johnson-Cook (J-C). An method to predict the temperature distribution in orthogonal cutting is based on the constituent model of various material and the mechanics of their cutting process. In this method, the average temperature at the primary shear zone (PSZ) and the secondary shear zone (SSZ) were determined for various materials, based on a constitutive model and a chip-formation model using measurements of cutting force and chip thicknes. The J-C model constants were taken from Hopkinson pressure bar tests. Cutting conditions, cutting forces and chip thickness were used to predict shear stress. Experimental cutting heat results with the same cutting parameters using the minimum lubrication method (MQL) were recorded through the Testo-871 thermal camera. The thermal distribution results between the two methods has a difference in value, as well as distribution. From the difference, we have analyzed some of the causes, finding the effect of the minimum quantity lubrication parameters on the difference.


Sign in / Sign up

Export Citation Format

Share Document