scholarly journals Spatio-Temporal Variation Analysis of Landscape Pattern Respond to Land Use Change from 1985 to 2015 in Xuzhou City, China

Author(s):  
Yantao Xi ◽  
Nguyen Xuan Thinh ◽  
Cheng Li

Rapid urbanization has dramatically spurred the economic development over the past three decades, especially in China, but has nevertheless had negative impacts on natural resources since it is an irreversible process. Thus, it is essential to timely monitor and quantitatively analysis the changes in land use over time and to identify the landscape pattern variation related to growth mode in different period. This study aims at inspecting spatiotemporal characteristics of landscape pattern respond to land use changes in Xuzhou city during the period from 1985 to 2015. In this connection, we proposed a new spectral index, named the Normalized Difference Enhanced Urban Index (NDEUI), which combines data from NTL (Nighttime light) from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) with annual maximum Enhanced Vegetation Index (EVI) to reduce the detection confusion between urban areas and barren land, as well as follows. NDEUI-assisted Random Forests algorithm was implemented to obtain the land use/land cover (LULC) maps of Xuzhou in 1985, 1995, 2005 and 2015, respectively. Here, four different periods viz. 1985–1995, 1995–2005, 2005–2015 and 1985–2015 are chosen for the change analysis of land use and landscape pattern. The results indicated that the urban area has increased by about 30.65%, 10.54%, 68.77%, and 143.75% during the four periods mentioned above at the main expense of agricultural land, respectively. The spatial trend maps revealed that continuous transition from other land use types into urban land has appeared a dual-core development mode throughout the urbanization process, located at the new city region and the Jiawang district, mainly affected by the construction of new city region, freeway and the high railway station. Furthermore, we quantified the patch complexity, aggregation, connectivity and diversity of landscape employing a number of landscape metrics to represent the changes of landscape pattern at both class and landscape level, affected by urbanization during the study period. The results showed that with regard to the four aspects of landscape pattern, there were considerable differences among the four years, mainly owing to the increasing dominance of urbanized land. Spatiotemporal variation of landscape pattern was also conducted on the basis of subgrids in 900 m × 900 m. Combined with the land use changes and spatiotemporal variation of landscape pattern, it can be concluded that different urbanization modes and intensity result in variously the spatiotemporal evolution of landscape patterns. For Xuzhou city, the urban growth mainly appeared a leapfrog mode alone both sides of the roads during the period of 1985 to 1995, and then shifted into edge-expansion mode during the period from 1995 to 2005, whereas the edge-expansion and leapfrog modes coexisted for the period from 2005 to 2015. The high valuable spatiotemporal information generated utilizing RS and GIS in this study may give assistance to urban planners and policymakers to well understand urban dynamics and evaluate their spatiotemporal and environmental impacts at a local level for the sake of sustainable urban planning in the future.

2018 ◽  
Vol 10 (11) ◽  
pp. 4287 ◽  
Author(s):  
Yantao Xi ◽  
Nguyen Thinh ◽  
Cheng Li

Rapid urbanization has dramatically spurred economic development since the 1980s, especially in China, but has had negative impacts on natural resources since it is an irreversible process. Thus, timely monitoring and quantitative analysis of the changes in land use over time and identification of landscape pattern variation related to growth modes in different periods are essential. This study aimed to inspect spatiotemporal characteristics of landscape pattern responses to land use changes in Xuzhou, China durfing the period of 1985–2015. In this context, we propose a new spectral index, called the Normalized Difference Enhanced Urban Index (NDEUI), which combines Nighttime light from the Defense Meteorological Satellite Program/Operational Linescan System with annual maximum Enhanced Vegetation Index to reduce the detection confusion between urban areas and barren land. The NDEUI-assisted random forests algorithm was implemented to obtain the land use/land cover maps of Xuzhou in 1985, 1995, 2005, and 2015, respectively. Four different periods (1985–1995, 1995–2005, 2005–2015, and 1985–2015) were chosen for the change analysis of land use and landscape patterns. The results indicate that the urban area has increased by about 30.65%, 10.54%, 68.77%, and 143.75% during the four periods at the main expense of agricultural land, respectively. The spatial trend maps revealed that continuous transition from other land use types into urban land has occurred in a dual-core development mode throughout the urbanization process. We quantified the patch complexity, aggregation, connectivity, and diversity of the landscape, employing a number of landscape metrics to represent the changes in landscape patterns at both the class and landscape levels. The results show that with respect to the four aspects of landscape patterns, there were considerable differences among the four years, mainly owing to the increasing dominance of urbanized land. Spatiotemporal variation in landscape patterns was examined based on 900 × 900 m sub-grids. Combined with the land use changes and spatiotemporal variations in landscape patterns, urban growth mainly occurred in a leapfrog mode along both sides of the roads during the period of 1985 to 1995, and then shifted into edge-expansion mode during the period of 1995 to 2005, and the edge-expansion and leapfrog modes coexisted in the period from 2005 to 2015. The high value spatiotemporal information generated using remote sensing and geographic information system in this study could assist urban planners and policymakers to better understand urban dynamics and evaluate their spatiotemporal and environmental impacts at the local level to enable sustainable urban planning in the future.


2019 ◽  
Vol 6 (1) ◽  
pp. 31
Author(s):  
Nuramalina Binti Mohamad ◽  
Wan Yusryzal Wan Ibrahim ◽  
Ahmad Nazri M. Ludin

Dengue is the most common urban disease that is most prevalent in tropical areas. WHO 2009 stated that these diseases has grown a public health concern due to the risk of dengue infection that has increased dramatically between 50 and 100 million cases every year. This issue was very corresponded with landscape and environment changes. The objective of this paper is to discuss how landscape patterns in relation to dengue incidence.  Open website; idengue were highly contributed in this study to locate the most risky area for dengue fever incidence at the township level. Geographic information system (GIS) was used to demonstrate the spatial patterns of all dengue cases in Johor Bahru and Geoprocessing was used to measure the boundary of risk according to the distribution of dengue outbreak. After that, to analyze the spatial landscape pattern, satellite images were used.  Spatial descriptive analysis shows non-strata housing, open space, road, planned commercial, strata housing and drainage system network is the most prevalence land use activity for dengue incidence in Iskandar Region. The finding shows the common landscape composition that relates to dengue cases. In conclusion, the future development of land use should be considered on landscape pattern towards rapid urbanization. 


2019 ◽  
Vol 11 (23) ◽  
pp. 6675 ◽  
Author(s):  
Siqi Liu ◽  
Qing Yu ◽  
Chen Wei

Rapid urbanization is one of the most important factors causing land-use change, which mainly results from the orientation of government policies, adjustment of industrial structure, and migration of the rural population. Land use and land cover change (LUCC) is the natural foundation of urban development that is significantly influenced by human activities. By analyzing the LUCC and its inner driving force, as well as landscape pattern change, human activity and urban sustainable development can be better understood. This research adopted a geographic information system (GIS) and remote sensing (RS) technology to comprehensively analyze land use of Guangzhou, respectively, in 1995, 2005, and 2015. Fragmentation Statistics (FRAGSTATS) is the most authoritative software to calculate landscape metrics. Landscape pattern change was analyzed by FRAGSTATS. The results showed that urban land significantly increased from 16.33% in 1995 to 36.05% in 2015. Farmland greatly decreased from 45.16% in 1995 to 27.82% in 2005 and then slightly decreased to 25.10% in 2015. In the first decade, the non-agricultural conversion of rural land and the expansion of urban land was the dominant factor that led to the change. In the second decade, urban land had been supplemented through the redevelopment of low-efficiency land. The fragmentation of landscape patterns significantly increased from 1995 to 2005 and slightly decreased from 2005 to 2015. It indicated that the change in land use in the second decade was different from that in the first. This difference mainly resulted from three aspects: (1) urban development area and ecological conservation area were clearly defined in Guangzhou; (2) many small towns had developed into urban centers, and the scattered urban land gathered into these centers; (3) the establishment of greenway improved the connection of fragmented patches. After that, this study discussed land-use change and its causes and proposed the trend of urban development from the perspective of sustainability.


2019 ◽  
Vol 11 (21) ◽  
pp. 6174 ◽  
Author(s):  
Jinming Yang ◽  
Shimei Li ◽  
Huicui Lu

The spatial structure and configuration of land-use patches, i.e., landscape patterns could affect the flow of energy and materials in inner-urban ecosystems, and hence the sustainable development of urban areas. Studying landscape pattern changes under the process of urbanization would have implicational significance to urban planning and urban sustainability. In this paper, land-use change and urban expansion intensity (UEI) were treated as the inducement factors for changes in landscape patterns, and stepwise regression and geographically weighted regression (GWR) were adapted to quantify their integrated and distributed magnitude effects on landscape patterns, respectively. The findings suggested that land-uses have different contributions to changes in landscape patterns at different urban development zones (downtown, suburban plain area and mountainous suburban areas). Furthermore, the GWR analysis results indicated that the effect of UEI on landscape patterns has spatial and temporal heterogeneity. From 1987 to 2000, the UEI had great explanatory capacity on changes in landscape patterns and helped the landscape assemble faster in the downtown and adjacent areas. However, with the shifting of the center of urban construction from downtown to the suburbs, the high explanatory ability was oriented towards suburban areas during 2000–2016 and the magnitude of influence spatially changed. Therefore, a compact city and protection policy should be adapted to different regions in the study area to achieve strong urban sustainability.


Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 269
Author(s):  
Eleanor N. Field ◽  
Ryan E. Tokarz ◽  
Ryan C. Smith

The ecology and environmental conditions of a habitat have profound influences on mosquito population abundance. As a result, mosquito species vary in their associations with particular habitat types, yet long-term studies showing how mosquito populations shift in a changing ecological landscape are lacking. To better understand how land use changes influence mosquito populations, we examined mosquito surveillance data over a thirty-four-year period for two contrasting sites in central Iowa. One site displayed increasing levels of urbanization over time and a dramatic decline in Culex pipiens group (an informal grouping of Culex restuans, Culex pipiens, and Culex salinarius, referred to as CPG), the primary vectors of West Nile virus in central Iowa. Similar effects were also shown for other mosquito vector populations, yet the abundance of Aedes vexans remained constant during the study period. This is in contrast to a second site, which reflected an established urban landscape. At this location, there were no significant changes in land use and CPG populations remained constant. Climate data (temperature, total precipitation) were compiled for each location to see if these changes could account for altered population dynamics, but neither significantly influence CPG abundance at the respective site locations. Taken together, our data suggest that increased landscape development can have negative impacts on Culex vector populations, and we argue that long-term surveillance paired with satellite imagery analysis are useful methods for measuring the impacts of rapid human development on mosquito vector communities. As a result, we believe that land use changes can have important implications for mosquito management practices, population modeling, and disease transmission dynamics.


Author(s):  
Xin Zhang ◽  
Lin Zhou ◽  
Yuqi Liu

Changes in landscape patterns in a river basin play a crucial role in the change on load of non-point source pollution. The spatial distribution of various land use types affects the transmission of non-point source pollutants on the basis of source-sink theory in landscape ecology. Jiulong River basin in southeast of China was selected as the study area in this paper. Aiming to analyze the correlation between changing landscape patterns and load of non-point source pollution in this area, traditional landscape metrics and the improved location-weighted landscape contrast index based on the minimum hydrological response unit (HRULCI) were applied in this study, in combination with remote sensing and geographic information system (GIS) technique. The results of the landscape metrics showed the enhanced fragmentation extent and the decreasing polymerization degree of the overall landscape in the watershed. High values of HRULCI were concentrated in cultivated land, while low HRULCI values mostly appeared in forestland, indicating that cultivated land substantially enhanced non-point source pollution, while forestland inhibited the pollution process.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 724 ◽  
Author(s):  
Pankaj Kumar ◽  
Rajarshi Dasgupta ◽  
Brian Johnson ◽  
Chitresh Saraswat ◽  
Mrittika Basu ◽  
...  

Rapid changes in land use and land cover pattern have exerted an irreversible change on different natural resources, and water resources in particular, throughout the world. Khambhat City, located in the Western coastal plain of India, is witnessing a rapid expansion of human settlements, as well as agricultural and industrial activities. This development has led to a massive increase in groundwater use (the only source of potable water in the area), brought about significant changes to land management practices (e.g., increased fertilizer use), and resulted in much greater amounts of household and industrial waste. To better understand the impacts of this development on the local groundwater, this study investigated the relationship between groundwater quality change and land use change over the 2001–2011 period; a time during which rapid development occurred. Water quality measurements from 66 groundwater sampling wells were analyzed for the years 2001 and 2011, and two water quality indicators (NO3− and Cl− concentration) were mapped and correlated against the changes in land use. Our results indicated that the groundwater quality has deteriorated, with both nitrate (NO3−) and chloride (Cl−) levels being elevated significantly. Contour maps of NO3− and Cl− were compared with the land use maps for 2001 and 2011, respectively, to identify the impact of land use changes on water quality. Zonal statistics suggested that conversion from barren land to agricultural land had the most significant negative impact on water quality, demonstrating a positive correlation with accelerated levels of both NO3− and Cl−. The amount of influence of the different land use categories on NO3− increase was, in order, agriculture > bare land > lake > marshland > built-up > river. Whereas, for higher concentration of Cl− in the groundwater, the order of influence of the different land use categories was marshland > built-up > agriculture > bare land > lake > river. This study will help policy planners and decision makers to understand the trend of groundwater development and hence to take timely mitigation measures for its sustainable management.


2020 ◽  
Vol 12 (14) ◽  
pp. 5500 ◽  
Author(s):  
Yu Song ◽  
Xiaodong Song ◽  
Guofan Shao

Intense human activities and drastic land use changes in rapidly urbanized areas may cause serious water quality degradation. In this study, we explored the effects of land use on water quality from a landscape perspective. We took a rapidly urbanized area in Hangzhou City, China, as a case study, and collected stream water quality data and algae biomass in a field campaign. The results showed that built-up lands had negative effects on water quality and were the primary cause of stream water pollution. The concentration of total phosphorus significantly correlated with the areas of residential, industrial, road, and urban greenspace, and the concentration of chlorophyll a also significantly correlated with the areas of these land uses, except residential land. At a landscape level, the correlation analysis showed that the landscape indices, e.g., dominance, shape complexity, fragmentation, aggregation, and diversity, all had significant correlations with water quality parameters. From the perspective of land use, the redundancy analysis results showed that the percentages of variation in water quality explained by the built-up, forest and wetland, cropland, and bareland decreased in turn. The spatial composition of the built-up lands was the main factor causing stream water pollution, while the shape complexities of the forest and wetland patches were negatively correlated with stream water pollution.


2020 ◽  
Vol 47 (8) ◽  
pp. 1361-1379
Author(s):  
Chao Xu ◽  
Dagmar Haase ◽  
Meirong Su ◽  
Yutao Wang ◽  
Stephan Pauleit

In the context of rapid urbanization, it remains unclear how urban landscape patterns shift under different urban dynamics, in particular taking different influencing factors of urban dynamics into consideration. In the present study, three key influencing factors were considered, namely, housing demand, spatial structure, and growth form. On this basis, multiple urban dynamic scenarios were constructed and then calculated using either an autologistic regression–Markov chain–based cellular automata model or an integer programming-based urban green space optimization model. A battery of landscape metrics was employed to characterize and quantitatively assess the landscape pattern changes, among which the redundancy was pre-tested and reduced using principal component analysis. The case study of the Munich region, a fast-growing urban region in southern Germany, demonstrated that the changes of the patch complexity index and the landscape aggregation index were largely similar at sub- and regional scales. Specifically, low housing demand, monocentric and compact growth scenarios showed higher levels of patch complexity but lower levels of landscape aggregation, compared to high housing demand, polycentric and sprawl growth scenarios, respectively. In contrast, the changes in the landscape diversity index under different scenarios showed contrasting trends between different sub-regional zones. The findings of this study provide planners and policymakers with a more in-depth understanding of urban landscape pattern changes under different urban planning strategies and its implications for landscape functions and services.


Cities ◽  
2020 ◽  
Vol 107 ◽  
pp. 102876
Author(s):  
Neema Simon Sumari ◽  
Patrick Brandful Cobbinah ◽  
Fanan Ujoh ◽  
Gang Xu

Sign in / Sign up

Export Citation Format

Share Document