scholarly journals Recycling Prospects for Saponite-Containing Water at Diamond Processing Plants in Arkhangelsk Region, Russia

Author(s):  
Valentine A. Chanturiya ◽  
Vladimir G. Minenko ◽  
Dmitriy V. Makarov ◽  
Olga V. Suvorova ◽  
Ekaterina A. Selivanova

The analysis of methods of cleaning and processing of saponite-bearing technogenic waters of diamond mining enterprises of the Arkhangelsk region is carried out. The perspective of the electrochemical separation method for extracting saponite from man-caused waters, providing a targeted change in its structural-texture, physico-chemical and mechanical properties, is shown. The possible directions of realization of saponite and products of its modification in various branches of industry are considered.

Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 549 ◽  
Author(s):  
Valentine Chanturiya ◽  
Vladimir Minenko ◽  
Dmitriy Makarov ◽  
Olga Suvorova ◽  
Ekaterina Selivanova

Methods of cleaning and processing of saponite-containing water from diamond processing plants in the Arkhangelsk region, Russia, are discussed. The advantages of electrochemical separation of saponite from process water enabling to change its structural-texture, physico-chemical and mechanical properties are demonstrated. Possible areas of saponite and modified-saponite products application are considered.


2015 ◽  
Vol 37 (4) ◽  
pp. 369-374
Author(s):  
G.I. Khovanets’ ◽  
◽  
Y.G. Medvedevskikh ◽  
V.P. Zakordonskiy ◽  
V.V. Kochubey ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Yana Legostaeva ◽  
Anna Gololobova ◽  
Vladimir Popov

Geochemical risk is caused by the release of hazardous chemicals to the earth surface. Primary diamond deposits are located in difficult mining and geological conditions. They represent natural geochemical anomalies associated with the mineral composition of rocks and groundwater, which contain a number of impurity elements with high toxic properties (Tl, Di, As, Cd, Hg), and increased concentrations of heavy metals (Cu, Zn, Pb, Ti, V and others). The paper presents the physical-geographical and mining-geological conditions of the diamondiferous region, where three large mining and processing divisions operate: Udachninsky, Aikhalsky and Nyurbinsky. pH, organic matter (humus), total nitrogen, and physical clay were identified in the study samples, by using potentiometric, photoelectric colorimetric, spectrophotometric methods, and pipette method for particle size analysis. Gross and mobile forms of trace elements were determined by atomic absorption and emission spectrometry. The groups of elements were identified that determined the natural and man-made anomalies. The accumulation of Cr, Ni, and Co determines the influence of kimberlite magmatism in general. Cu, Sr, and Li are accumulated in the soils of the Daldyn-Alakit diamond-bearing region. Increased concentrations of Mn and Cu are typical in the soils of the Sredne-Markhinsky diamond-bearing region. An assessment of the ecological and geochemical state of the study areas was carried out according to the indicator of total pollution (Zc), which is the sum of the excess of the concentration coefficients of chemical elements accumulating in anomalies. Areas of pollution and zones of the greatest risk are localized, which occupy up to 75% of the total area of industrial sites. They confined to quarry-dump complexes and to areas of impact of tailing dumps of processing plants.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2215 ◽  
Author(s):  
Ruiwen Li ◽  
Chuan Mo ◽  
Yichuan Liao

The physico-chemical properties of the Uranium intermetallic compound are of technological importance for improvement of the safety and compatibility of nuclear engineering systems. Diffusion couple samples with U and Cu were assembled and U-Cu intermetallic compounds were fabricated at interface by hot pressure diffusion method at a treatment temperature of 350 °C to 650 °C and at a pressure of 168 MPa in a vacuum furnace. The microstructure and element distribution of the compound phase have been studied by means of SEM, EDS, and XRD. The result showed that a new phase was developed to a thickness of approximately 10 μm with a ration of U:Cu with 1:5. Mechanical properties such as elastic moduli and hardness of the compound have been studied by means of nanoindentation. The nanoindentation testing on sample indicated that hardness of Uranium intermetallic compound are higher than that of metal U and Cu. Uranium intermetallic compound and U have a Young’s moduli with 121 GPa, 160 GPa respectively. The elastic/plastic responses of U-Cu intermetallic compound and U under nanoindentation tests were also discussed in detail.


MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2689-2694
Author(s):  
Karla A. Gaspar-Ovalle ◽  
Juan V. Cauich-Rodriguez ◽  
Armando Encinas

ABSTRACTNanofibrous mats of poly ε-caprolactone (PCL) were fabricated by electrospinning. The nanofiber structures were investigated and characterized by scanning electron microscope, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, static water-contact-angle analysis and mechanical properties. The results showed that the nanofibrous PCL is an ideal biopolymer for cell adhesion, owing to its biocompatibility, biodegradability, structural stability and mechanical properties. Differential scanning calorimetry results showed that the fibrous structure of PCL does not alter its crystallinity. Studies of the mechanical properties, wettability and degradability showed that the structure of the electrospun PCL improved the tensile modulus, tensile strength, wettability and biodegradability of the nanotemplates. To evaluate the nanofibrous structure of PCL on cell adhesion, osteoblasts cells were seeded on these templates. The results showed that both adhesion and proliferation of the cells is viable on these electrospun PCL membranes. Thus electrospinning is a relatively inexpensive and scalable manufacturing technique for submicron to nanometer diameter fibers, which can be of interest in the commodity industry.


2020 ◽  
Vol 1012 ◽  
pp. 84-88
Author(s):  
Moises A. Canazza ◽  
Sandra R. Scagliusi ◽  
Hélio Wiebeck

In order to minimize impacts caused to environment and to save natural resources, especially from non-renewable sources, recycling of polymeric materials has been object of study. In this scenery, are included elastomeric materials, such as rubber, especially used in tires manufacturing, considering that pneumatic industry consumes around 60% of rubber production. Taking into account that final tires destination is a requirement based on norms and national and international laws, this work aims to the development of a study on the efficacy of micro-wave irradiation in the process of de-vulcanization of tire powder to be used in recycling. Tire powder was subjected to micro-wave irradiation and further merged to SBR (butadiene-styrene rubber) polymeric matrix, at 5, 15, 25 phr; after mixture, resulting compound was characterized for evaluation of physico-chemical and mechanical properties. For the assessment of all samples containing SBR and rubber powder there were applied following essays: Infra-red spectroscopy (FTIR), Tensile strength and elongation at break, Swelling Index. It was verified higher values for mechanical properties imparted by an increased quantity of rubber powder incorporated to SBR matrix.


Sign in / Sign up

Export Citation Format

Share Document