scholarly journals Forecasting Events in the Chaotic Dynamics of a Fiber Laser

Author(s):  
Andrés Aragoneses ◽  
Yingqi Ding

Being able to forecast events is of great importance in many fields, from brain behavior to earthquakes or stock markets. Because each dynamical system has intrinsic features, different statistical tools have to be used for each system. Here we study the time series of the output intensity of a fiber laser with an ordinal patterns analysis, and we look for temporal correlations in order to statistically forecast the most intense events. We set two thresholds, a low one and a high one, to distinguish between low intensity versus high intensity events. We find that when the time series is performing events below the low threshold it shows some preferred temporal patterns before performing events above a high threshold.

Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 151
Author(s):  
Andrés Aragoneses ◽  
Yingqi Ding

We study the time series of the output intensity of a Raman fiber laser with an ordinal patterns analysis in the laminar-turbulent transition. We look for signatures among consecutive events that indicate when the system changes from triggering low-intensity to high-intensity events. We set two thresholds, a low one and a high one, to distinguish between low intensity versus high-intensity events. We find that when the time series is performing low-intensity events (below the low threshold), it shows some preferred temporal patterns before triggering high-intensity events (above a high threshold). The preferred temporal patterns remain the same all through the pump current range studied, even though two clearly different dynamical regimes are covered (laminar regime for low pump currents and turbulent regime for high pump currents). We also find that the turbulent regime shows clearer signatures of determinism than the laminar regime.


2016 ◽  
Vol 116 (3) ◽  
Author(s):  
A. Aragoneses ◽  
L. Carpi ◽  
N. Tarasov ◽  
D. V. Churkin ◽  
M. C. Torrent ◽  
...  

2018 ◽  
Vol 28 (12) ◽  
pp. 123111 ◽  
Author(s):  
J. H. Martínez ◽  
J. L. Herrera-Diestra ◽  
M. Chavez

2021 ◽  
Vol 13 (4) ◽  
pp. 702
Author(s):  
Mustafa Kemal Emil ◽  
Mohamed Sultan ◽  
Khaled Alakhras ◽  
Guzalay Sataer ◽  
Sabreen Gozi ◽  
...  

Over the past few decades the country of Qatar has been one of the fastest growing economies in the Middle East; it has witnessed a rapid increase in its population, growth of its urban centers, and development of its natural resources. These anthropogenic activities compounded with natural forcings (e.g., climate change) will most likely introduce environmental effects that should be assessed. In this manuscript, we identify and assess one of these effects, namely, ground deformation over the entire country of Qatar. We use the Small Baseline Subset (SBAS) InSAR time series approach in conjunction with ALOS Palsar-1 (January 2007 to March 2011) and Sentinel-1 (March 2017 to December 2019) synthetic aperture radar (SAR) datasets to assess ground deformation and conduct spatial and temporal correlations between the observed deformation with relevant datasets to identify the controlling factors. The findings indicate: (1) the deformation products revealed areas of subsidence and uplift with high vertical velocities of up to 35 mm/yr; (2) the deformation rates were consistent with those extracted from the continuously operating reference GPS stations of Qatar; (3) many inland and coastal sabkhas (salt flats) showed evidence for uplift (up to 35 mm/yr) due to the continuous evaporation of the saline waters within the sabkhas and the deposition of the evaporites in the surficial and near-surficial sabkha sediments; (4) the increased precipitation during Sentinel-1 period compared to the ALOS Palsar-1 period led to a rise in groundwater levels and an increase in the areas occupied by surface water within the sabkhas, which in turn increased the rate of deposition of the evaporitic sediments; (5) high subsidence rates (up to 14 mm/yr) were detected over landfills and dumpsites, caused by mechanical compaction and biochemical processes; and (6) the deformation rates over areas surrounding known sinkhole locations were low (+/−2 mm/yr). We suggest that this study can pave the way to similar countrywide studies over the remaining Arabian Peninsula countries and to the development of a ground motion monitoring system for the entire Arabian Peninsula.


2005 ◽  
Vol 93 (4) ◽  
pp. 2167-2173 ◽  
Author(s):  
Baogang Liu ◽  
James C. Eisenach ◽  
Chuanyao Tong

Estrogen increases reflex nocifensive responses to distension of the uterus and the urinary bladder, but estrogen's effects on afferent response to distension of the uterine cervix, the site of obstetric and some gynecologic pain, has not been studied. Here, single fiber recording of hypogastric nerve responses to uterine cervical distension were obtained from ovariectomized (OVX) rats and OVX rats treated with estrogen (ES). Spontaneous activity was greater in the ES group (13 of 24 units; 54%) than in the OVX group (6 of 27 units; 22%). ES differentially altered the response of low- and high-threshold units to distension. For high-threshold units, firing frequency was increased two- to fourfold with 60–100 gm distension in ES compared with OVX groups ( P < 0.05). In contrast, the response of low-threshold units to distension was not altered by ES. About one-half of units tested in each group responded to a temperature increase from 35 to 49°C. A greater proportion of thermosensitive units were also mechanosensitive in the ES group (7 of 8 afferents, 88%) than in the OVX group (5 of 11 afferents, 45%). Acute application of ES in OVX rats failed to evoke or increase distension-induced responses. These data show the polymodal nature of afferent fibers innervating the uterine cervix. Increased spontaneous activity with ES may play a part in remodeling of the cervical tissue, whereas selective sensitization of high-threshold units by ES might underlie increased pain responses to cervical distension. Failure of acute ES treatment to mimic this suggests a genomic effect.


2019 ◽  
Vol 100 (4) ◽  
Author(s):  
Felipe Olivares ◽  
Luciano Zunino ◽  
Miguel C. Soriano ◽  
Darío G. Pérez

2013 ◽  
Vol 819 ◽  
pp. 160-164
Author(s):  
Yong Xiang Jiang ◽  
Bing Du ◽  
Pan Zhang ◽  
San Peng Deng ◽  
Yu Ming Qi

On-line monitoring recognition for machining chatter is one of the key technologies in manufacturing. Based on the nonlinear chaotic control theory, the vibration signal discrete time series for on-line monitoring indicator is studed. As in chatter the chaotic dynamics process attractor dimension is reduced, the KolmogorovSinai entropy (K-S) index is extracted to reflected the regularity of workpiece chatter, then the k-S entropy is simplified by coarse - grained entropy rate (CER), which can easily evaluated as chatter online monitoring threshold value. The milling test shows that the CER have a sharp decline when chatter occurre, and can quickly and accurately forecast chatter.


1988 ◽  
Vol 139 (1) ◽  
pp. 317-328
Author(s):  
R. N. McBurney ◽  
S. J. Kehl

One of the goals in studying the electrical properties of neurosecretory cells is to relate their electrical activity to the process of secretion. A central question in these studies concerns the role of transmembrane calcium ion flux in the initiation of the secretory event. With regard to the secretory process in pituitary cells, several research groups have addressed this question in vitro using mixed primary anterior pituitary cell cultures or clonal cell lines derived from pituitary tumours. Other workers, including ourselves, have used homogeneous cell cultures derived from the pituitary intermediate lobes of rats to examine the characteristics of voltage-dependent conductances, the contribution of these conductances to action potentials and their role in stimulus-secretion coupling. Pars intermedia (PI) cells often fire spontaneous action potentials whose frequency can be modified by the injection of sustained currents through the recording electrode. In quiescent cells action potentials can also be evoked by the injection of depolarizing current stimuli. At around 20 degrees C these action potentials have a duration of about 5 ms. Although most of the inward current during action potentials is carried by sodium ions, a calcium ion component can be demonstrated under abnormal conditions. Voltage-clamp experiments have revealed that the membrane of these cells contains high-threshold, L-type, Ca2+ channels and low-threshold Ca2+ channels. Since hormone release from PI cells appears not to be dependent on action potential activity but does depend on external calcium ions, it is not clear what role these Ca2+ channels play in stimulus-secretion coupling in cells of the pituitary pars intermedia. One possibility is that the low-threshold Ca2+ channels are more important to the secretory process than the high-threshold channels.


Sign in / Sign up

Export Citation Format

Share Document