scholarly journals An Overview of PV Technology by Analyzing Various MPPT Algorithms, Suitable Converters, Stability & Their Cost Estimation.

Author(s):  
RONAKBHAI ARVINDBHAI RANA ◽  
JISHNU DAS ◽  
GURU RAGHAVAENDRA ◽  
HEE-JE KIM

Recently, solar energy is growing as a power source for potential alternative to meet the global demand. Unlike other energy sources such as coal, nuclear, gas and oil, their prices are not only stable, they prevent the harmful side-effects on the environment, being one of the best sources of clean energy (solar energy). This article presents an analysis of the transformation of the static system for the treatment of solar energy using photovoltaic modules. It is designed to generate energy for future generations to be more useful from different parts of the photovoltaic energy conversion system, such as a DC-DC converter, current inverter, maximum power tracking algorithm (MPPT), filter, the stability of a system, etc. The above result will be useful in the improvement of efficiency in photovoltaics structures.

2001 ◽  
Vol 90 (8) ◽  
pp. 4143-4151 ◽  
Author(s):  
Lei Liu ◽  
C. S. Jayanthi ◽  
Shi-Yu Wu

Author(s):  
Ahmad Fudholi ◽  
Abrar Ridwan ◽  
Rado Yendra ◽  
Ari Pani Desvina ◽  
Hartono Hartono ◽  
...  

<span lang="EN-US">The most important benefit of solar energy is renewable and low pollutant source of energy (clean energy). Solar energy technology and research are developing fast and much of the technology needed for these applications in industry and agricultures is already available. Solar drying technology (SDT) is one of the most attractive and promising applications of solar energy technology. In this paper, the various performances of SDTs in Indonesia are summarized with details. Generally, the cabinet-type and tunnel-type SDTs are remarkably well suited to drying small quantities of vegetables and fruit on the household scale. Greenhouse and hybrid SDTs are suitable for use on a large scale by industries.</span>


2021 ◽  
Author(s):  
Kyriakoula Papachristopoulou ◽  
Ilias Fountoulakis ◽  
Panagiotis Kosmopoulos ◽  
Panagiotis Ι. Raptis ◽  
Rodanthi-Elisavet Mamouri ◽  
...  

&lt;p&gt;Cyprus focuses on increasing the share of its renewable energy resources from 13.9% in 2020 to 22.9% in 2030, with solar energy exploitation systems to be one of the main pillars of this effort, due to the high solar potential of the island. In this study, we investigated the effect of clouds as well as aerosols, and especially dust, on the downwelling surface solar irradiation in terms of Global Horizontal Irradiation (GHI) and Direct Normal Irradiation (DNI). In order to quantify the effects of clouds, aerosols and dust on different surface solar radiation components, we used the synergy of satellite derived products for clouds, high quality and fine resolution satellite retrievals of aerosols and dust from the newly developed MIDAS dataset, and radiative transfer modeling (RTM). GHI and DNI climatologies have been also developed based on the above information. According to our findings, clouds attenuate ~25 &amp;#8211; 30% of annual GHI and 35 &amp;#8211; 50% of annual DNI, aerosols attenuate 5 &amp;#8211; 10% and 15 &amp;#8211; 35% respectively, with dust being responsible for 30 &amp;#8211; 50% of the overall attenuation by aerosols. The outcomes of this study are useful for installation planning and for estimating the PV and CSP performance on a short-term future basis, helping towards improved penetration of solar energy exploitation systems in the electric grid of Cyprus. Furthermore, they are strongly linked to Affordable and Clean Energy (SDG 7) which has a central role in national climate plans and requires services in energy meteorology, climate applications of satellite data, and providing high quality wind and radiation data.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgements&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;This study was funded by the EuroGEO e-shape (grant agreement No 820852) and EXCELSIOR (grant agreement No 857510)&lt;/p&gt;


2018 ◽  
Vol 6 (8) ◽  
pp. 214-217
Author(s):  
Deepak Aryal

This paper reports analytical review results on the global and national importance of solar energy as a clean and renewable source of energy. Pre-monsoon and post monsoon seasons have higher mean monthly sunshine duration (about 8 hours/day) than summer (about 5 hours/day) and winter (about 7 hours/day) seasons in Kathmandu. The lowest sunshine duration during summer season is attributed to the effect of monsoonal clouds during that period. Pre-monsoon and monsoon seasons receive solar energy of about 250 W/m2 and 200 W/m2 respectively. The winter season receives the least amount of solar radiation (about 150 W/m2). Results show high prospect of solar energy utilization both in rural and urban areas of Nepal.


2021 ◽  
Vol 9 (2) ◽  
pp. 1069-1076
Author(s):  
Ashish Singhal, Et. al.

The extenuation of non-conventional global energy demands and changing environments is one of the most important ingredients in recent days. A case is about the study of sun energy acquired as clean energy by the government of India (GOI). GOI announced the various schemes for solar energy (SE) in the last decades because of the tremendous growth of solar energy aspects for the non-conventional sources with the support of central and state government. This article covered the progress of solar energy in India with major achievements. In this review article, the authors are trying to show the targets of the government of India (GOI) by 2022 and his vintage battle to set up a plant of solar or clean energy in India. This paper also emphasizes the different policies of GOI to schooling the people for creating the jobs in different projects like “Make in India”. This paper projected the work of the dynamic Prime Minister of India Mr. Narendra Modi and his bravura performance to increase the targets 100 GW solar energy by 2022.


2015 ◽  
Vol 4 ◽  
pp. 473-480 ◽  
Author(s):  
Vinod Kumar ◽  
R.L. Shrivastava ◽  
S.P. Untawale
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
D.-L. Kwong ◽  
X. Li ◽  
Y. Sun ◽  
G. Ramanathan ◽  
Z. X. Chen ◽  
...  

This paper reviews the progress of the vertical top-down nanowire technology platform developed to explore novel device architectures and integration schemes for green electronics and clean energy applications. Under electronics domain, besides having ultimate scaling potential, the vertical wire offers (1) CMOS circuits with much smaller foot print as compared to planar transistor at the same technology node, (2) a natural platform for tunneling FETs, and (3) a route to fabricate stacked nonvolatile memory cells. Under clean energy harvesting area, vertical wires could provide (1) cost reduction in photovoltaic energy conversion through enhanced light trapping and (2) a fully CMOS compatible thermoelectric engine converting waste-heat into electricity. In addition to progress review, we discuss the challenges and future prospects with vertical nanowires platform.


Author(s):  
E. Mantelli ◽  
C. Schoof

The onset of sliding in ice sheets may not take the form of a sharp boundary between regions at the melting point, in which sliding is permitted, and regions below that temperature, in which there is no slip. Such a hard switch leads to the paradox of the bed naturally wanting to refreeze as soon as sliding has commenced. A potential alternative structure is a region of subtemperate sliding. Here temperatures are marginally below the melting point and sliding velocities slower than they would if the bed was fully temperate. Rather than being controlled by a standard sliding law, sliding velocities are then constrained by the need to maintain energy balance. This thermal structure arises in temperature-dependent sliding laws in the limit of strong sensitivity to temperature. Here, we analyse the stability of such subtemperate regions, showing that they are subject to a set of instabilities that occur at all length scales between ice thickness and ice sheet length. The fate of these instabilities is to cause the formation of patches of frozen bed, raising the possibility of highly complicated cold-to-temperate transitions with spatial structures at short length scales that cannot be resolved in large-scale ice sheet simulation codes.


2016 ◽  
Vol 858 ◽  
pp. 1028-1031 ◽  
Author(s):  
Jian Wu Sun ◽  
Valdas Jokubavicius ◽  
Lu Gao ◽  
Ian Booker ◽  
Mattias Jansson ◽  
...  

There is a strong and growing worldwide research on exploring renewable energy resources. Solar energy is the most abundant, inexhaustible and clean energy source, but there are profound material challenges to capture, convert and store solar energy. In this work, we explore 3C-SiC as an attractive material towards solar-driven energy conversion applications: (i) Boron doped 3C-SiC as candidate for an intermediate band photovoltaic material, and (ii) 3C-SiC as a photoelectrode for solar-driven water splitting. Absorption spectrum of boron doped 3C-SiC shows a deep energy level at ~0.7 eV above the valence band edge. This indicates that boron doped 3C-SiC may be a good candidate as an intermediate band photovoltaic material, and that bulk like 3C-SiC can have sufficient quality to be a promising electrode for photoelectrochemical water splitting.


Sign in / Sign up

Export Citation Format

Share Document