scholarly journals Purification and Product Characterization of Lipoxygenase from Opium Poppy Cultures (Papaver Somniferum L.)

Author(s):  
Ivana Holková ◽  
Drahomíra Rauová ◽  
Michaela Mergová ◽  
Lýdia Bezáková ◽  
Peter Mikuš

Opium poppy (Papaver somniferum L.) is an ancient medicinal plant producing pharmaceutically important benzylisoquinoline alkaloids. In the present work we focused on the study of enzyme lipoxygenase (LOX, EC 1.13.11.12) from opium poppy cultures. LOX is involved in lipid peroxidation and lipoxygenase oxidation products of polyunsaturated fatty acids have a significant role in regulation of growth, development and plant defence responses to biotic or abiotic stress. The purpose of this study was to isolate and characterize LOX enzyme from opium poppy callus cultures. LOX was purified by ammonium sulphate precipitation followed by hydrophobic chromatography using Phenyl-Sepharose CL-4B and hydroxyapatite chromatography using HA Ultrogel sorbent. SDS-PAGE analysis and immunoblotting revealed that LOX from opium poppy cultures was a single monomeric protein showing the relative molecular weight of 83 kDa. To investigate the positional specificity of the LOX reaction, purified LOX was incubated with linoleic acid and the products were analysed by high-performance liquid chromatography. LOX converted linoleic acid primarily to 13-hydroperoxy-(9Z,11E)-octadecadienoic acids (78%) and to a lesser extent to 9-hydroperoxy-(10E,12Z)-octadecadienoic acids (22%). Characterization of LOX from opium poppy cultures provided valuable information in understanding of LOX involvement in regulation of signalling pathways leading to biosynthesis of secondary metabolites with significant biological activity.

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4268
Author(s):  
Ivana Holková ◽  
Drahomíra Rauová ◽  
Michaela Mergová ◽  
Lýdia Bezáková ◽  
Peter Mikuš

Opium poppy (Papaver somniferum L.) is an ancient medicinal plant producing pharmaceutically important benzylisoquinoline alkaloids. In the present work we focused on the study of enzyme lipoxygenase (LOX, EC 1.13.11.12) from opium poppy cultures. LOX is involved in lipid peroxidation and lipoxygenase oxidation products of polyunsaturated fatty acids have a significant role in regulation of growth, development and plant defense responses to biotic or abiotic stress. The purpose of this study was to isolate and characterize LOX enzyme from opium poppy callus cultures. LOX was purified by ammonium sulfate precipitation and then followed by hydrophobic chromatography using Phenyl-Sepharose CL-4B and hydroxyapatite chromatography using HA Ultrogel sorbent. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and immunoblotting revealed that LOX from opium poppy cultures was a single monomeric protein showing the relative molecular weight of 83 kDa. To investigate the positional specificity of the LOX reaction, purified LOX was incubated with linoleic acid and the products were analyzed by high-performance liquid chromatography in two steps, firstly with reverse phase (120-5 Nucleosil C18 column) and secondly with normal phase (Zorbax Rx-SIL column). LOX converted linoleic acid primarily to 13-hydroperoxy-(9Z,11E)-octadecadienoic acids (78%) and to a lesser extent 9-hydroperoxy-(10E,12Z)-octadecadienoic acids (22%). Characterization of LOX from opium poppy cultures provided valuable information in understanding LOX involvement in regulation of signaling pathways leading to biosynthesis of secondary metabolites with significant biological activity.


Author(s):  
Walaa Hussein ◽  
Ramadan WA ◽  
Sameh Fahim

Tomato (Solanum lycopersicum) are consid­ered one of the most important vegetable crops and infected by numbers of different diseases. Studying the use of biological alternatives, instead of chemical substances against plant diseases became necessary for the treatment by beneficial microorganisms endophytes, which can excrete natural products benefits to plant in reducing disease severity, promoting growth and inducing plant defence mechanisms. In this work, three endophytes strains were isolated from tomato stems and their 16srDNA have been found to belong to Bacillus species. The first strain was named BMG100, the second BMG101 and the third BMG102. Two Bacillus strains BMG100 and BMG101 have been found to harbour synthetases genes from three lipopeptides families; surfactin, plipastatin, and iturin (mycosubtilin) which can be detected by degenerated primers designed to detect the presence of synthetases genes encoding lipopeptides. The lipopeptides production was proved by their quantification using High Performance Liquid Chromatography (HPLC), whereas BMG100 produced 105, 178 and 293 mg/L of plipastatin, mycosubtilin and surfactin, respectively, BMG101 produced 385 mg/L of surfactin and 236 mg/L of mycosubtilin, while BMG102 showed no lipopeptides production. Keywords: Tomato; Endophytic bacteria; Lipopeptides; Bacillus species


2004 ◽  
Vol 82 (2) ◽  
pp. 153-160 ◽  
Author(s):  
H Vitrac ◽  
M Courrègelongue ◽  
M Couturier ◽  
F Collin ◽  
P Thérond ◽  
...  

The present study was aimed at determining the peroxidation of model membranes constituted of liposomes of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC) submitted to hydroxyl free radicals (generated by γ-radiolysis) attack. Liposomes of PLPC were prepared using the sonication technique, and dynamic light-scattering (DLS) measurements allowed characterization of the liposomal dispersions. Irradiation damages in sonication-generated liposomes were assessed by monitoring several oxidation products, such as conjugated dienes (by means of UV–visible spectrophotometry) and hydroperoxides (using reverse phase high-performance liquid chromatography (HPLC) associated with chemiluminescence detection). It has been shown that three different families of hydroperoxides are formed: the first one (at low radiation doses) results from HO· attack on the linoleyl chain of PLPC, giving phosphatidylcholine hydroperoxides possessing a conjugated dienic structure; the two others (at high radiation doses) are obtained by the secondary HO· attack on the primary hydroperoxide family. The quantification of these products associated with the comparison of their radiation-dose-dependent formation has provided valuable information concerning the mechanisms of their formation. Analysis by HPLC – mass spectrometry has confirmed the presence of hydroperoxides and underlined various other products, like chain-shortened fragments and oxygenated derivatives of polyunsaturated sn-2 fatty acyl chain residues. Structural assignment proposals of some oxidation products have been proposed.Key words: radiolysis, phospholipids, peroxidation, hydroperoxides, liposomes.


Sign in / Sign up

Export Citation Format

Share Document