scholarly journals Effect of Recycled Ceramic Waste Content on the Properties of Unsaturated Polyester Resin

Author(s):  
Mohamed Farsane ◽  
Abdellah Anouar ◽  
Souad Chah ◽  
Miloudi Bouzziri

In this study, the properties of unsaturated polyester resin were studied in the presence of recycled ceramic waste particles. Herein, composites were created that contained 28.5-50 wt% porcelain particles (particle size <180 µm). High filler contents increased the gel time and decreased the exotherm temperature of unsaturated polyester resin during curing. The obtained results showed that physical parameters, such as the resin density and porosity, increased as the filler content increased. In addition, the X-ray diffraction results indicated that the produced samples were a combination of ceramic waste particles and unsaturated polyester resin, resulting in semi crystalline structure. The results showed that the maximum water absorption at 40°C increased from 0.97 to 1.5% as the filler content increased from 28.5 to 50 wt%; in this process, the materials experienced a color change but did not lose mechanical performance. Finally, the samples were characterized by thermogravimetric analysis (TGA) to study the effect of porcelain powder on the thermal degradation of the resin. The TGA scans were analyzed with the Friedman method. The results indicated that the samples with porcelain powder exhibited substantially better thermal stability than unsaturated polyester resin.

2021 ◽  
Vol 58 (3) ◽  
pp. 174-185
Author(s):  
Mohamed Farsane ◽  
Khalid Saadouni ◽  
Soufia Lhasnaoui ◽  
Aziz Akhiate ◽  
Abdellah Anouar ◽  
...  

In this study, the properties of unsaturated polyester resin were studied in the presence of recycled ceramic waste particles. Herein, composites were created that contained 28.5-50 wt% porcelain particles (particle size [180 �m). High filler contents increased the gel time and decreased the exotherm temperature of unsaturated polyester resin during curing. The obtained results showed that physical parameters, such as the resin density and porosity, increased as the filler content increased. In addition, the X-ray diffraction results indicated that the produced samples were a combination of ceramic waste particles and unsaturated polyester resin, resulting in semi crystalline structure. The results showed that the maximum water absorption at 40�C increased from 0.97 to 1.5% as the filler content increased from 28.5 to 50 wt%; in this process, the materials experienced a color change but did not lose mechanical performance. Finally, the samples were characterized by thermogravimetric analysis (TGA) to study the effect of porcelain powder on the thermal degradation of the resin. The TGA scans were analyzed with the Friedman method. The results indicated that the samples with porcelain powder exhibited substantially better thermal stability than unsaturated polyester resin.


2020 ◽  
Vol 57 (3) ◽  
pp. 52-60
Author(s):  
Mohamed Farsane ◽  
Abdellah Anouar ◽  
Souad Chah ◽  
Miloud Bouzziri

In this study, the composites of ceramic waste filler polyester were produced with ceramic waste as the filler and unsaturated polyester resin as the matrix. Various weight of filler loads (particle size [180 �m) were used; 0, 28.5, 41 and 50 wt% in view to better understand the effect of filler content on the mechanical, thermal properties and water absorption of the composites. Additionally, Fourier transform infrared spectroscopy was used to characterize the samples, from the findings, it is noticed an increase in the level of porcelain powder decreased the flexural strength and Hardness and increased the density. The results of water absorption have shown the composites absorbs fewer water. Thermal degradation indicates that the composite is more resistant to temperature than unsaturated polyester matrix due to the effect of porcelain powder incorporated. Moreover, the results reveal an opportunity for using the ceramic waste as filler in unsaturated polyester resin formulation.


2021 ◽  
Vol 57 (4) ◽  
pp. 1-12
Author(s):  
Mohamed Farsane ◽  
Abdellah Anouar ◽  
Souad Chah ◽  
Said Dagdag ◽  
Miloud Bouzziri

The paper aims to evaluate the gel time and exotherm temperature properties of the curing of unsaturated polyester resin at various amounts of Methyl ethyl ketone peroxide, cobalt octoate and porcelain powder. The gel time of samples are determined using the simple method, while the exotherm temperature are evaluated using the thermocouple. The variation of these properties is discussed theoretically and experimentally.


2012 ◽  
Vol 182-183 ◽  
pp. 33-36 ◽  
Author(s):  
Hong Yan Zhang ◽  
Xi Shi Tai ◽  
Hai Quan Wang

As a conductive fillers, graphite nanosheets can be induced by the AC electric field in unsaturated polyester resin and then prepared oriented unsaturated polyester resin/graphite nanosheets composite. We investigate the preparation, configuration and capability of the unsaturated resin/ graphite nanosheets conductive composites and the oriented theory of the graphite nanosheets induced in the electric field. The measures and observation of scanning electron microscopy(SEM), X-ray diffraction(XRD), electric current have shown that the graphite nanosheets are oriented by electric field which were randomly dispersed in the polymer matrix at the beginning, and then oriented with their flakes along the electric field in the polyester resin.


2012 ◽  
Vol 455-456 ◽  
pp. 524-527
Author(s):  
Hong Yan Zhang ◽  
Hai Quan Wang ◽  
Su Qing Wang

As conductive fillers, graphite nanosheets can be induced by the AC electric field in unsaturated polyester resin and then prepared oriented unsaturated polyester resin/graphite nanosheets composite. we investigate the preparation、configuration and capability of the unsaturated resin/graphite nanosheets conductive composites and the oriented theory of the graphite nanosheets induced in the electric field. The measures and observation of scanning electron microscopy (SEM), X-ray diffraction (XRD), electric current have shown that the graphite nanosheets are oriented by electric field which were randomly dispersed in the polymer matrix at the beginning, and then oriented with their flakes along the electric field in the polyester resin.


2019 ◽  
Vol 15 (2) ◽  
pp. 123-132
Author(s):  
Stephen Durowaye ◽  
Olatunde Sekunowo ◽  
Catherine Kuforiji ◽  
Chiemelie Nwafor ◽  
Chidiebere Ekwueme

 The efficacy of reinforcement of polyester resin matrix composites with agro waste particles to effect improvement on the disadvantage of low mechanical properties for optimal performance was studied. 5-25 wt. % of coconut shell, periwinkle shell, and cow bone particles were applied in reinforcing unsaturated polyester resin matrix by mould casting and the microstructural and mechanical characteristics of the composites were evaluated. There was uniform distribution of the agro waste particles in the polymer composites matrix from the scanning electron microscopy (SEM) result. The hybrid composite at 15 wt. % reinforcement demonstrated the highest mechanical properties in terms of ultimate tensile strength (66.73 MPa), flexural strength (76.76 MPa), hardness (87.76 BHN), and impact energy (23.16 J). This shows the efficacy of hybridisation and the high potential of the composite for wider applications.


Sign in / Sign up

Export Citation Format

Share Document