scholarly journals Modulation of Adhesion Process, E-Selectin and VEGF Production by Anthocyanins and Their Metabolites in an In-Vitro Model of Atherosclerosis

Author(s):  
Mirko Marino ◽  
Cristian Del Bo’ ◽  
Massimiliano Tucci ◽  
Dorothy Klimis-Zacas ◽  
Patrizia Riso ◽  
...  

The present study aims to evaluate the ability of peonidin and petunidin-3-glucoside (Peo and Pet-3-glc) and their metabolites (vanillic acid; VA and methyl-gallic acid; MetGA), to prevent monocyte (THP-1) adhesion to endothelial cells (HUVECs), and to reduce the production of VCAM-1, E-selectin and VEGF in a stimulated pro-inflammatory environment, a pivotal step of atherogenesis. Tumor necrosis factor-α (TNF-α; 100 ng mL-1) was used to stimulate the adhesion of labelled monocytes (THP-1) to endothelial cells (HUVECs). Successively, different concentrations of Peo-3-glc and Pet-3-glc (0.02, 0.2, 2 and 20 µM) and VA and MetGA (0.05, 0.5, 5 and 50 µM) were tested. After 24 h, the production of VCAM-1, E-selectin and VEGF was quantified by ELISA kits, while the adhesion process was measured spectrophotometrically. Peo-3-glc and Pet-3-glc (from 0.02 to 20 µM) significantly (p<0.0001) decreased THP-1 adhesion to HUVECs at all concentrations (-37%, -24%, -30% and -47% for Peo-3-glc; -37%, -33%, -33% and -45% for Pet-3-glc). VA, but not MetGA, reduced the adhesion process at 50 µM (-21%; p<0.001). At the same concentrations, a significant (p<0.0001) reduction of E-selectin, but not VCAM-1, was documented. In addition, anthocyanins and their metabolites significantly decreased (p<0.001) VEGF production. The present findings suggest, that while Peo-3-glc and Pet-3-glc, but not their metabolites, reduced monocyte adhesion to endothelial cells through suppression of E-selectin production, VEGF production was reduced by both anthocyanins and their metabolites suggesting a role in regulation of angiogenesis.

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 655 ◽  
Author(s):  
Mirko Marino ◽  
Cristian Del Bo’ ◽  
Massimiliano Tucci ◽  
Dorothy Klimis-Zacas ◽  
Patrizia Riso ◽  
...  

The present study aims to evaluate the ability of peonidin and petunidin-3-glucoside (Peo-3-glc and Pet-3-glc) and their metabolites (vanillic acid; VA and methyl-gallic acid; MetGA), to prevent monocyte (THP-1) adhesion to endothelial cells (HUVECs), and to reduce the production of vascular cell adhesion molecule (VCAM)-1, E-selectin and vascular endothelial growth factor (VEGF) in a stimulated pro-inflammatory environment, a pivotal step of atherogenesis. Tumor necrosis factor-α (TNF-α; 100 ng mL−1) was used to stimulate the adhesion of labelled monocytes (THP-1) to endothelial cells (HUVECs). Successively, different concentrations of Peo-3-glc and Pet-3-glc (0.02 µM, 0.2 µM, 2 µM and 20 µM), VA and MetGA (0.05 µM, 0.5 µM, 5 µM and 50 µM) were tested. After 24 h, VCAM-1, E-selectin and VEGF were quantified by ELISA, while the adhesion process was measured spectrophotometrically. Peo-3-glc and Pet-3-glc (from 0.02 µM to 20 µM) significantly (p < 0.0001) decreased THP-1 adhesion to HUVECs at all concentrations (−37%, −24%, −30% and −47% for Peo-3-glc; −37%, −33%, −33% and −45% for Pet-3-glc). VA, but not MetGA, reduced the adhesion process at 50 µM (−21%; p < 0.001). At the same concentrations, a significant (p < 0.0001) reduction of E-selectin, but not VCAM-1, was documented. In addition, anthocyanins and their metabolites significantly decreased (p < 0.001) VEGF production. The present findings suggest that while Peo-3-glc and Pet-3-glc (but not their metabolites) reduced monocyte adhesion to endothelial cells through suppression of E-selectin production, VEGF production was reduced by both anthocyanins and their metabolites, suggesting a role in the regulation of angiogenesis.


2005 ◽  
Vol 83 (6) ◽  
pp. 1665-1673 ◽  
Author(s):  
Tamer M. Said ◽  
Ashok Agarwal ◽  
Tommaso Falcone ◽  
Rakesh K. Sharma ◽  
Mohamed A. Bedaiwy ◽  
...  

1998 ◽  
Vol 66 (3) ◽  
pp. 1190-1199 ◽  
Author(s):  
Richard F. Silver ◽  
Qing Li ◽  
Jerrold J. Ellner

ABSTRACT We assessed the applicability of an in vitro model of low-level infection of human monocytes to the characterization of the virulence of strains of the Mycobacterium tuberculosis family. Peripheral blood monocytes were infected at a 1:1 ratio with the virulent M. tuberculosis strain H37Rv, the avirulentM. tuberculosis strain H37Ra, and the attenuated M. bovis strain BCG. Both the percentages of cells infected by the three strains and the initial numbers of intracellular organisms were equivalent, as were levels of monocyte viability up to 7 days following infection. Intracellular growth reflected virulence, as H37Rv replicated in logarithmic fashion throughout the assay, BCG growth reached a plateau at 4 days, and H37Ra did not grow at all. The same patterns of growth were observed following infection of human alveolar macrophages with H37Rv and H37Ra. Monocyte production of tumor necrosis factor alpha was significantly higher following infection with virulent H37Rv than with either BCG or H37Ra. In contrast, there was no clear correlation of interleukin 10 production with virulence. Nonadherent cells of purified-protein-derivative-positive donors mediated equivalent degrees of reduction of the intracellular growth of H37Rv, BCG, and H37Ra. Low-level infection of human monocytes with H37Rv, BCG, and H37Ra thus provides an in vitro model for assessment of the virulence of these M. tuberculosis family strains. Furthermore, it is suggested that the virulence of these strains is expressed primarily by their differing abilities to adapt to the intracellular environment of the mononuclear phagocyte.


2001 ◽  
Vol 38 (7) ◽  
pp. 557-565 ◽  
Author(s):  
Karin Hemmer ◽  
Lucie Fransen ◽  
Hugo Vanderstichele ◽  
Eugeen Vanmechelen ◽  
Paul Heuschling

Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2284-2289 ◽  
Author(s):  
VW van Hinsbergh ◽  
KA Bauer ◽  
T Kooistra ◽  
C Kluft ◽  
G Dooijewaard ◽  
...  

Abstract Several investigators have reported that tumor necrosis factor (TNF) can alter the production of plasminogen activator type-1 (PAI-1) and plasminogen activators (PAs) by endothelial cells in vitro. We have examined the in vivo effects of recombinant human TNF administration on fibrinolysis as assessed by parameters in plasma during a 24-hour period of continuous TNF infusion to 17 cancer patients with active disease. The plasma levels of PAI activity increased sevenfold after 3 and 24 hours of TNF infusion. This was the result of an increase of PAI- 1 antigen; PAI-2 antigen was not detectable. Plasma concentrations of tissue-type PA (t-PA) antigen increased twofold to fivefold after 3 and 24 hours of TNF infusion, whereas urokinase-type PA antigen levels in plasma remained unaltered. After 3 hours of TNF infusion the plasma levels of alpha 2-antiplasmin were slightly decreased, 5% on average, suggesting that fibrinolysis continued. After 24 hours of TNF infusion a highly significant increase in fibrin- plus fibrinogen-degradation products, and separately of fibrin degradation products and fibrinogen degradation products, was found. This indicates that fibrinolysis persisted, at least partly, in the presence of high levels of PAI activity. Whereas PAI-1 production increased, t-PA production by human endothelial cells in vitro remains unaltered or even decreases on TNF addition. It has been shown previously that TNF infusion in our patients results in thrombin and fibrin generation. Therefore, it is possible that thrombin, not TNF, is the actual stimulus for t-PA production in our patients. We speculate that fibrin is formed during TNF infusions and that plasmin is generated by t-PA action immediately on the initial formation of (soluble) fibrin molecules. Such a process may explain the generation of degradation products of both fibrin and fibrinogen during infusion of TNF in patients.


Blood ◽  
1992 ◽  
Vol 80 (11) ◽  
pp. 2755-2764 ◽  
Author(s):  
NC van de Kar ◽  
LA Monnens ◽  
MA Karmali ◽  
VW van Hinsbergh

Abstract The epidemic form of the hemolytic uremic syndrome (HUS), beginning with an acute gastroenteritis, has been associated with a verocytotoxin- producing Escherichia coli infection. The endothelial cell is believed to play an important role in the pathogenesis of HUS. Endothelial cell damage by verocytotoxin-1 (VT-1) in vitro is potentiated by the additional exposure of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-alpha). Preincubation of human umbilical vein endothelial cells (HUVEC) with TNF-alpha resulted in a 10- to 100-fold increase of specific binding sites for 125I-VT-1. Furthermore, interleukin-1 (IL-1), lymphotoxin (TNF-beta), and lipopolysaccharide (LPS) also markedly increase VT-1 binding. Several hours' exposure to TNF-alpha was enough to enhance the number of VT-1 receptors on the endothelial cells for 2 days. The TNF-alpha-induced increase in VT-1 binding could be inhibited by simultaneous addition of the protein synthesis inhibitor cycloheximide. Glycolipid extracts of TNF-alpha- treated cells tested on thin-layer chromatography demonstrated an increase of globotriaosylceramide (GbOse3cer), a functional receptor for VT-1, which suggests that preincubation of human endothelial cells with TNF-alpha leads to an increase in GbOse3cer synthesis in these cells. We conclude from this study that TNF-alpha and IL-1 induce one (or more) enzyme(s) that is (are) rate-limiting in the synthesis of the glycolipid VT-1 receptor, GbOse3cer. These in vitro studies suggest that, in addition to VT-1, inflammatory mediators play an important role in the pathogenesis of HUS.


Sign in / Sign up

Export Citation Format

Share Document