scholarly journals A Comprehensive Understanding of UA-ADRCs (Uncultured, Autologous, Fresh, Unmodified, Adipose Derived Regenerative Cells, Isolated at Point of Care) in Regenerative Medicine

Author(s):  
Eckhard Alt ◽  
Glenn Winnier ◽  
Alexander Haenel ◽  
Ralf Rothoerl ◽  
Oender Solakoglu ◽  
...  

It has become practically impossible to survey the literature on cells derived from adipose tissue with the aim to apply them in regenerative medicine. The aim of this review is to provide a jump start to understanding the potential of UA-ADRCs (uncultured, unmodified, fresh, autologous adipose derived regenerative cells isolated at the point of care) in regenerative medicine. We show that serious and adequate clinical research demonstrates that tissue regeneration with UA-ADRCs is safe and effective. ADRCs are neither 'fat stem cells' nor could they exclusively be isolated from adipose tissue, as ADRCs contain the same adult (depending on the definition) pluripotent or multipotent stem cells that are ubiquitously present in the walls of small blood vessels. Of note, the specific isolation procedure used has significant impact on the number and viability of the cells and hence on safety and efficacy of UA-ADRCs. Furthermore, there is no need to further separate adipose-derived stem cells (ASCs) from ADRCs if the latter were adequately isolated from adipose tissue. Most importantly, UA-ADRCs have the physiological capacity to adequately regenerate tissue without need for manipulating, stimulating and/or (genetically) reprogramming the cells for this purpose. Tissue regeneration with UA-ADRCs fulfills the criteria of homologous use.

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1097 ◽  
Author(s):  
Eckhard U. Alt ◽  
Glenn Winnier ◽  
Alexander Haenel ◽  
Ralf Rothoerl ◽  
Oender Solakoglu ◽  
...  

It has become practically impossible to survey the literature on cells derived from adipose tissue for regenerative medicine. The aim of this paper is to provide a comprehensive and translational understanding of the potential of UA-ADRCs (uncultured, unmodified, fresh, autologous adipose derived regenerative cells isolated at the point of care) and its application in regenerative medicine. We provide profound basic and clinical evidence demonstrating that tissue regeneration with UA-ADRCs is safe and effective. ADRCs are neither ‘fat stem cells’ nor could they exclusively be isolated from adipose tissue. ADRCs contain the same adult stem cells ubiquitously present in the walls of blood vessels that are able to differentiate into cells of all three germ layers. Of note, the specific isolation procedure used has a significant impact on the number and viability of cells and hence on safety and efficacy of UA-ADRCs. Furthermore, there is no need to specifically isolate and separate stem cells from the initial mixture of progenitor and stem cells found in ADRCs. Most importantly, UA-ADRCs have the physiological capacity to adequately regenerate tissue without need for more than minimally manipulating, stimulating and/or (genetically) reprogramming the cells for a broad range of clinical applications. Tissue regeneration with UA-ADRCs fulfills the criteria of homologous use as defined by the regulatory authorities.


2021 ◽  
pp. 23-25
Author(s):  
Sheeja Rajan ◽  
Rithwik Rajesh

Adipocytes are now known to have immense capacity for self-renewal and as well as multipotential differentiation. Adipose derived stem cells (ADSC) are multipotent stem cells of mesenchymal origin, located ubiquitously in human body. Unlike the bone marrow stem cells, they are easy to harvest from subcutaneous tissues by minimally invasive procedures. Several advances in isolation, invitro culture and replication of adipose derived stem cells have occurred in last decade. Cell assisted lipo-transfers for enhancing the survival of autologous fat grafts (AFG) by enriching them with ADSC is being practiced in Plastic surgery. Because of their potential for angiogenesis, tissue regeneration, immunomodulatory and paracrine effects, fat grafts nd considerable applications in Plastic surgery and Regenerative medicine. This paper explores the current research into applications, techniques of harvest, culture and tissue engineering of ADSC and the concerns about the oncogenic potentiation and genetic stability of the cultured cell lines.


2016 ◽  
Vol 12 ◽  
pp. 38-47 ◽  
Author(s):  
Aleksandra Skubis ◽  
Bartosz Sikora ◽  
Nikola Zmarzły ◽  
Emilia Wojdas ◽  
Urszula Mazurek

This review article provides an overview on adipose-derived stem cells (ADSCs) for implications in bone tissue regeneration. Firstly this article focuses on mesenchymal stem cells (MSCs) which are object of interest in regenerative medicine. Stem cells have unlimited potential for self-renewal and develop into various cell types. They are used for many therapies such as bone tissue regeneration. Adipose tissue is one of the main sources of mesenchymal stem cells (MSCs). Regenerative medicine intends to differentiate ADSC along specific lineage pathways to effect repair of damaged or failing organs. For further clinical applications it is necessary to understand mechanisms involved in ADSCs proliferation and differentiation. Second part of manuscript based on osteogenesis differentiation of stem cells. Bones are highly regenerative organs but there are still many problems with therapy of large bone defects. Sometimes there is necessary to make a replacement or expansion new bone tissue. Stem cells might be a good solution for this especially ADSCs which manage differentiate into osteoblast in in vitro and in vivo conditions.


Author(s):  
Eckhard U. Alt ◽  
Christoph Schmitz ◽  
Xiaowen Bai

Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold certain promise for regenerative medicine. This paper is intended to clarify and facilitate the understanding, development and adoption of regenerative medicine in general and specifically of therapies based on unmodified, autologous adipose-derived regenerative cells (UA-ADRCs). To this end, results of landmark experiments on stem cells and stem cell therapy performed in the labs of the authors are summarized, the most intriguing of which are the following: (i) vascular associated mesenchymal stem cells (MSCs) can be isolated from different organs (adipose tissue, heart, skin, bone marrow and skeletal muscle) and differentiated into ectoderm, mesoderm and endoderm, providing significant support for the hypothesis of the existence of a small, ubiquitously distributed, universal vascular associated stem cell with full pluripotency; (ii) the orientation and differentiation of MSCs are driven by signals of the respective microenvironment; and (iii) these stem cells irrespective of the tissue origin exhibit full pluripotent differentiation potential without any prior genetic modification or the need for culturing. They can be obtained from a small amount of adipose tissue when using the appropriate technology for isolating the cells, and can be harvested from and re-applied to the same patient at the point of care without the need for complicated processing, manipulation, culturing, expensive equipment, or repeat interventions. These findings demonstrate the potential of UA-ADRCs for triggering the development of an entire new generation of medicine for the benefit of patients and of healthcare systems.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Ilaria Zollino ◽  
Maria Grazia Sibilla ◽  
Sergio Gianesini ◽  
Erica Menegatti ◽  
Mirko Tessari ◽  
...  

Successful wound and ulcer repair remains a major biomedical challenge in the 21<sup>st</sup> Century. Innovative and alternative treatment options have been investigated over the last decade and stem cells application has been suggested as a possible novel therapy for regenerative medicine. In particular, stem cells derived from adipose tissue have been attracting a lot of attention in recent years as an alternative to the use of cells derived from bone marrow. This technical note describes the procedure introduced by Coleman for intraoperatory harvesting of adipose derived-stem-cells and proposes a rationale for using it in difficult wound healing and recalcitrant ulcers.


2014 ◽  
Vol 46 (3) ◽  
pp. 178-184 ◽  
Author(s):  
Ziqing Dong ◽  
Lin Luo ◽  
Yunjun Liao ◽  
Yunsong Zhang ◽  
Jianhua Gao ◽  
...  

2021 ◽  
Vol 93 (1) ◽  
pp. 40-50
Author(s):  
A. S. Sultanova ◽  
◽  
O. Ya. Bespalova ◽  
O. Yu. Galkin ◽  
◽  
...  

Adipose tissue is the most convenient source of cellular material for regenerative medicine as it can be obtained in significant quantities via cosmetic liposuction, lipoaspiration of subcutaneous fat or by excision of fat deposits. Adipose tissue consists of adipocytes and cells, which are the part of the stromal-vascular fraction (SVF). Different cell populations can be isolated from SVF, among which the population of adipose tissue stem cells (adipose-derived stem cells, ADSC) is especially important for regenerative medicine. SVF can be obtained relatively easily from adipose tissue (adipose tissue is an alternative to bone marrow in terms of being a source of stem cells) and used to treat various pathologies. Recent studies show that SVF not only has a therapeutic effect similar to that of ADSC, but in some cases is even more effective. The article provides the analysis of the main methods of SVF obtainment, characteristics of SVF cellular composition, its potential for use in clinical medicine and its main advantages over other sources of cellular material, including­ ADSC cultured in vitro, for regenerative medicine. Keywords: adipocytes, adipose-derived stem cells, regenerative medicine, stromal-vascular fraction


2016 ◽  
Vol 4 (20) ◽  
pp. 3515-3525 ◽  
Author(s):  
Shirae K. Leslie ◽  
Anthony M. Nicolini ◽  
Gobalakrishnan Sundaresan ◽  
Jamal Zweit ◽  
Barbara D. Boyan ◽  
...  

Alginate microbeads incorporating adipose-derived stem cells (ASCs) have potential for delivering viable cells capable of facilitating tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document