scholarly journals Physical, Mechanical and Durability Performance of Pastes Containing Carbon Fiber

Author(s):  
Mohamad Atiyeh ◽  
Ertug Aydin

The damage caused by global warming is rapidly increasing, and its adverse effects become more evident with each passing day. Although it is known that the use of alternative binder materials in concrete would decrease this negative effect, reluctance to new composites continues. Waste use plays a vital role in sustainability studies. In this study, pure cement paste was prepared and enriched with carbon fiber. This study investigated the wide range of volume fraction of carbon fiber in cement-based composites. Two different industrial wastes, marble dust, and bottom ash were chosen and mixed with cement and four different (0.3%, 0.75%, 1.5%, and 2.5%) carbon fiber volume fractions. Based on physical, mechanical, and durability tests at 7, 28, and 56-days of curing, the composites were resistant to sulfate and seawater attack. The 0.75% carbon fiber addition seems to be an optimum volume percentage beyond which both physical and mechanical properties were adversely affected. The composites with 0.75% carbon fiber have reached 48.4 MPa and 47.2 MPa at 56-days of curing for marble dust and bottom ash mixture groups, respectively.

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1899 ◽  
Author(s):  
Mohamad Atiyeh ◽  
Ertug Aydin

Damage caused by global warming is rapidly increasing, and its adverse effects become more evident with each passing day. Although it is known that the use of alternative binder materials in concrete would decrease this negative effect, reluctance to use such new composites continues. Waste plays a vital role in sustainability studies. In this study, pure cement paste was prepared and enriched with carbon fiber. This study also investigated the wide range of volume fraction of carbon fiber in cement-based composites. Two different types of industrial waste, i.e., marble dust and bottom ash, were chosen and mixed with cement and four different (0.3%, 0.75%, 1.5%, and 2.5%) carbon fiber volume fractions. Based on physical, mechanical, and durability tests at 7, 28, and 56 days of curing, the composites were resistant to sulfate and seawater attacks. The 0.75% carbon fiber addition seems to be an optimum volume percentage, beyond which both physical and mechanical properties were adversely affected. The composites with 0.75% carbon fiber reached 48.4 and 47.2 MPa at 56 days of curing for marble dust and bottom ash mixture groups, respectively.


2015 ◽  
Vol 1110 ◽  
pp. 77-81
Author(s):  
Eun Soo Lee ◽  
Daniel Buecher ◽  
Si Hoon Jang ◽  
Dae Young Lim ◽  
Ki Young Kim

The carbon fiber mat preforms are prepared by an air laid method with different fiber lengths of 10mm, 30mm and 50mm to characterize the resultant discontinuous composites. The composites are manufactured by a vacuum assisted resin infusion (VaRI) molding technique with the use of epoxy resins to investigate the effects of carbon fiber length on their physical and mechanical properties. The void content and thickness of the composites decrease with the increase in the fiber length at the same VaRI processing conditions. The tensile, flexural, impact properties of the composites are improved by increasing the fiber length in the textile preforms. By comparing with those of carbon fiber fabric reinforced composites, the discontinuous composites demonstrate the excellent performance in strength and modulus in spite of lower fiber volume fraction.


2012 ◽  
Vol 583 ◽  
pp. 150-153
Author(s):  
Qian Liu ◽  
Xiao Yuan Pei ◽  
Jia Lu Li

The modal properties of carbon fiber woven fabric (with fiber orientation of 45°/-45°) / epoxy resin composites with different fiber volume fraction were studied by using single input and single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction smaller, the peak value of natural frequency becomes lower and the attenuating degree of acceleration amplitude becomes faster.


2021 ◽  
pp. 002199832110112
Author(s):  
Qing Yang Steve Wu ◽  
Nan Zhang ◽  
Weng Heng Liew ◽  
Vincent Lim ◽  
Xiping Ni ◽  
...  

Propagation of ultrasonic wave in Carbon Fiber Reinforced Polymer (CFRP) is greatly influenced by the material’s matrix, resins and fiber volume ratio. Laser ultrasonic broadband spectral technique has been demonstrated for porosity and fiber volume ratio extraction on unidirection aligned CFRP laminates. Porosity in the matrix materials can be calculated by longitudinal wave attenuation and accurate fiber volume ratio can be derived by combined velocity through the high strength carbon fiber and the matrix material with further consideration of porosity effects. The results have been benchmarked by pulse-echo ultrasonic tests, gas pycnometer and thermal gravimetric analysis (TGA). The potentials and advantages of the laser ultrasonic technique as a non-destructive evaluation method for CFRP carbon fiber volume fraction evaluation were demonstrated.


2017 ◽  
Vol 37 (4) ◽  
pp. 238-246
Author(s):  
Uri Breiman ◽  
Jacob Aboudi ◽  
Rami Haj-Ali

The compressive strength of unidirectional composites is strongly influenced by the elastic and strength properties of the fiber and matrix phases, as well as by the local geometrical properties, such as fiber volume fraction, misalignment, and waviness. In the present investigation, two microbuckling criteria are proposed and examined against a large volume of measured data of unidirectional composites taken from the literature. The first criterion is based on the compressive strength formulation using the buckling of Timoshenko’s beam. It contains a single parameter that can be determined according to the best fit to experimental data for various types of polymeric matrix composites. The second criterion is based on buckling-wave propagation analogy using the solution of an eigenvalue problem. Both criteria provide closed-form expressions for the compressive strength of unidirectional composites. We propose modifications of the two criteria by a fitting approach, for a wide range of fiber volume fractions, applied to four classes of unidirectional composite systems. Furthermore, a normalized form of the two models is presented after calibration in order to compare their prediction against experimental data for each of the material systems. The new modified criteria are shown to give a good match to a wide range of unidirectional composite systems. They can be employed as practical compression failure criteria in the analysis and design of laminated structures.


2018 ◽  
Vol 91 (7) ◽  
pp. 733-741
Author(s):  
Mahboubeh Moslemi ◽  
Mansour Razavi ◽  
Mohammad Zakeri ◽  
Mohammad Reza Rahimipour ◽  
Marcus Schreiner

2011 ◽  
Vol 331 ◽  
pp. 175-178
Author(s):  
Xiao Yuan Pei ◽  
Jia Lu Li

A study on dynamic mechanical properties of carbon fiber plain woven fabric (with fiber orientation of 30°/-60°) / epoxy resin laminated composites with different fiber volume fraction was carried out. The test method is single input single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction is greater, the peak value of natural frequency becomes higher and the attenuating degree of acceleration’ amplitude becomes slower.


Sign in / Sign up

Export Citation Format

Share Document