Why COVID-19 Transmission is More Efficient and Aggressive than Viral Transmission in Previous Coronavirus Epidemics?

Author(s):  
Fatma Elrashdy ◽  
Elrashdy M. Redwan ◽  
Vladimir N Uversky

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing pandemic of coronavirus disease 2019 (COVID-19). The worldwide transmission of COVID-19 from human to human is spreading like wildfire, affecting almost every country in the world. In the past 100 years, the globe did not face microbial pandemic similar in scale to COVID-19. Taken together, both previous outbreaks of other members of the coronavirus family (SARS-CoV and MERS-CoV) did not produce even 1% of the global harm already inflicted by COVID-19. There are also four other CoVs capable of infecting humans (HCoVs), which circulate continuously in the human population, but their phenotypes are generally mild, and these HCoVs received relatively little attention. These dramatic differences between infection with HCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2 raise many questions, such as: Why is COVID-19 transmitted so quickly? Is it due to the some specific features of the viral structure? Are there some specific human (host) factors? Are there some environmental factors? The aim of this review is to collect and concisely summaries the possible and logic answers to these questions.

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1312 ◽  
Author(s):  
Fatma Elrashdy ◽  
Elrashdy M. Redwan ◽  
Vladimir N. Uversky

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a pandemic of coronavirus disease 2019 (COVID-19). The worldwide transmission of COVID-19 from human to human is spreading like wildfire, affecting almost every country in the world. In the past 100 years, the globe did not face a microbial pandemic similar in scale to COVID-19. Taken together, both previous outbreaks of other members of the coronavirus family (severe acute respiratory syndrome (SARS-CoV) and middle east respiratory syndrome (MERS-CoV)) did not produce even 1% of the global harm already inflicted by COVID-19. There are also four other CoVs capable of infecting humans (HCoVs), which circulate continuously in the human population, but their phenotypes are generally mild, and these HCoVs received relatively little attention. These dramatic differences between infection with HCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2 raise many questions, such as: Why is COVID-19 transmitted so quickly? Is it due to some specific features of the viral structure? Are there some specific human (host) factors? Are there some environmental factors? The aim of this review is to collect and concisely summarize the possible and logical answers to these questions.


Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 4-12 ◽  
Author(s):  
G. A. Shchelkunova ◽  
S. N. Shchelkunov

The last case of natural smallpox was recorded in October, 1977. It took humanity almost 20 years to achieve that feat after the World Health Organization had approved the global smallpox eradication program. Vaccination against smallpox was abolished, and, during the past 40 years, the human population has managed to lose immunity not only to smallpox, but to other zoonotic orthopoxvirus infections as well. As a result, multiple outbreaks of orthopoxvirus infections in humans in several continents have been reported over the past decades. The threat of smallpox reemergence as a result of evolutionary transformations of these zoonotic orthopoxviruses exists. Modern techniques for the diagnostics, prevention, and therapy of smallpox and other orthopoxvirus infections are being developed today.


2011 ◽  
Vol 366 (1567) ◽  
pp. 1080-1089 ◽  
Author(s):  
R. A. Foley ◽  
M. Mirazón Lahr

The abundant evidence that Homo sapiens evolved in Africa within the past 200 000 years, and dispersed across the world only within the past 100 000 years, provides us with a strong framework in which to consider the evolution of human diversity. While there is evidence that the human capacity for culture has a deeper history, going beyond the origin of the hominin clade, the tendency for humans to form cultures as part of being distinct communities and populations changed markedly with the evolution of H. sapiens . In this paper, we investigate ‘cultures’ as opposed to ‘culture’, and the question of how and why, compared to biological diversity, human communities and populations are so culturally diverse. We consider the way in which the diversity of human cultures has developed since 100 000 years ago, and how its rate was subject to environmental factors. We argue that the causes of this diversity lie in the distribution of resources and the way in which human communities reproduce over several generations, leading to fissioning of kin groups. We discuss the consequences of boundary formation through culture in their broader ecological and evolutionary contexts.


2021 ◽  
Vol 21 (4) ◽  
pp. 1574-83
Author(s):  
Eman A El-Masry

In the past years, numerous new fatal infections have emerged, including Ebola, Nipah, and Zika viruses, as well as coronaviruses. Recently, infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged in China, and were then transmitted all over the world, causing the coronavirus disease-19 (COVID-19) pandemic, which is transmitted at a higher rate than other diseases caused by coronaviruses. At the time of writing this review, COVID-19 is not contained in most countries in spite of quarantine, physical distancing, and enhanced hygiene measures. In this review, I address different methods for passive and active immunization against this virus, which is known to cause fatal respiratory disease, including natural passive immunization by breast milk, natural active immunization by herd immunization, artificial passive immunization by convalescent plasma or monoclonal antibodies, and artificial active immunization by vaccination. I hope this review will help design a prophylactic approach against outbreaks and pandemics of related coronaviruses in the future. Keywords: Breastfeeding; COVID-19; herd immunity; monoclonal antibodies; SARS-CoV; vaccine.


Author(s):  
Amanda Duffus

Amphibians are declining around the world and infectious diseases are thought to play a key role in these declines, along with habitat destruction and other environmental factors.  Since the late 1900s, several emerging infections have been identified in amphibians. The chytrids, of which there are two known to affect amphibians, Batrachochytrium dendtrobatids, and B. salamandrivorans; and ranaviruses are perhaps the most well-known and studied. There are also other, lesser known and studied pathogenic agents such as Perkinsea spp. and herpesviruses; that have emerged in approximately the same timeline, which may also be contributing to amphibian population dynamics. In this piece we examine the progress that has been made over the past decade in understanding ‘The Big Three’ and specifically how the emergence of B. salamandrivorans has brought together much of the amphibian disease world in the last half of the 2010s.


2013 ◽  
Vol 154 (47) ◽  
pp. 1877-1882
Author(s):  
László Rókusz ◽  
István Jankovics ◽  
Máté Jankovics ◽  
Júlia Sarkadi ◽  
Ildikó Visontai

Ten years have elapsed since the severe acute respiratory syndrome outbreak, which resulted in more than 8000 cases worldwide with more than 700 deaths. Recently, a new coronavirus, the Middle East Respiratory Syndrome Coronavirus emerged, causing serious respiratory cases and death. By the end of August 2013, 108 cases including 50 deaths were reported. The authors discuss a coronavirus-associated severe acute respiratory syndrome, which was detected in Hungary in 2005 and highlight its significance in 2013. In 2005 the patient was hospitalized and all relevant clinical and microbiological tests were performed. Based on the IgG antibody positivity of the serum samples, the patient was diagnosed as having severe acute respiratory syndrome coronavirus infection in the past. The time and source of the infection remained unknown. The condition of the patient improved and he was discharged from the hospital. The case raises the possibility of infections in Hungary imported from remote areas of the world and the importance of thorough examination of patients with severe respiratory syndrome with unknown etiology. Orv. Hetil., 154(47), 1877–1882.


Nature ◽  
2010 ◽  
Vol 463 (7282) ◽  
pp. 818-822 ◽  
Author(s):  
Alexander Karlas ◽  
Nikolaus Machuy ◽  
Yujin Shin ◽  
Klaus-Peter Pleissner ◽  
Anita Artarini ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (5) ◽  
pp. e19733 ◽  
Author(s):  
Auguste Genovesio ◽  
Miriam A. Giardini ◽  
Yong-Jun Kwon ◽  
Fernando de Macedo Dossin ◽  
Seo Yeon Choi ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Mauro Prato ◽  
Giuliana Giribaldi

It is generally accepted that the combination of bothPlasmodium falciparumparasite and human host factors is involved in the pathogenesis of complicated severe malaria, including cerebral malaria (CM). Among parasite products, the malarial pigment haemozoin (HZ) has been shown to impair the functions of mononuclear and endothelial cells. Different CM models were associated with enhanced levels of matrix metalloproteinases (MMPs), a family of proteolytic enzymes able to disrupt subendothelial basement membrane and tight junctions and shed, activate, or inactivate cytokines, chemokines, and other MMPs through cleavage from their precursors. Among MMPs, a good candidate for targeted therapy might be MMP-9, whose mRNA and protein expression enhancement as well as direct proenzyme activation by HZ have been recently investigated in a series of studies by our group and others. In the present paper the role of HZ and MMP-9 in complicated malaria, as well as their interactions, will be discussed.


Sign in / Sign up

Export Citation Format

Share Document