scholarly journals Molecular Docking Studies of α-Pyrone Derivatives Isolated from Alternaria phragmospora as CRM1 Inhibitors

Author(s):  
Ahmed Metwaly ◽  
Ibrahim Eissa ◽  
Ahmad Mostafa

Some α-Pyrone derivatives isolated from Alternaria phragmospora fungus showed promising anti leukemic activities, while others were inactive. CRM1/XPO1 (chromosome region maintenance 1 protein, also called exportin1 or PO1 in humans) has been chosen as a target for antileukemic molecular docking study for those compounds to understand their modes of interaction and structure activity relationships. The results showed that two (2 and 4), out of six, natural α-Pyrone derivatives exhibited well-established interactions with the amino acids of the receptor, which was in agreement with the experimental anti-leukemic results of these compounds. Moreover, twenty hypothetical chemically modified α-Pyrone derivatives (7-27) have been designed. Compounds 7, 8, 22 and 24 showed more efficient docking properties than the previously considered natural compounds.

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1002 ◽  
Author(s):  
Noor Almandil ◽  
Muhammad Taha ◽  
Rai Farooq ◽  
Amani Alhibshi ◽  
Mohamed Ibrahim ◽  
...  

We have synthesized quinoxaline analogs (1–25), characterized by 1H-NMR and HREI-MS and evaluated for thymidine phosphorylase inhibition. Among the series, nineteen analogs showed better inhibition when compared with the standard inhibitor 7-Deazaxanthine (IC50 = 38.68 ± 4.42 µM). The most potent compound among the series is analog 25 with IC50 value 3.20 ± 0.10 µM. Sixteen analogs 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 21 and 24 showed outstanding inhibition which is many folds better than the standard 7-Deazaxanthine. Two analogs 8 and 9 showed moderate inhibition. A structure-activity relationship has been established mainly based upon the substitution pattern on the phenyl ring. The binding interactions of the active compounds were confirmed through molecular docking studies.


2021 ◽  
Vol 59 (4) ◽  
pp. 441
Author(s):  
Hoàng Thị Kim Dung ◽  
Hoang-Phuc Nguyen ◽  
Thi-Kim-Chi Huynh

Discovering and developing drugs to treat Alzheimer's disease (AD) have been a crucial target for many decades. According to a large number of later studies, acetylcholinesterase (AChE) plays an important role in AD treatment. On the other hand, flavonoids are natural compounds that possessed a wide variety of bioactivities, including the inhibitory activity on AChE. In this study, we reported the structure and activity relationship of flavone and flavanone derivatives that semi-synthesized and synthesized from flower buds of Styphnolobium japonicum (Leguminosae) and citrus peels against AChE. The results showed that the introducing of the new functional groups that leads to increasing 3-folds better AChE inhibition of compound Q2 and Q4 than that of the original. The molecular docking study was investigated in order to illuminate the experimental results and find their binding modes.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Muhammad Taha ◽  
Maryam Irshad ◽  
Syahrul Imran ◽  
Fazal Rahim ◽  
Manikandan Selvaraj ◽  
...  

In this study we are going to present thiazole based carbohydrazide in search of potent antidiabetic agent as α-amylase inhibitors. Thiazole based carbohydrazide derivatives 1-25 have been synthesized, characterized by 1HNMR, 13CNMR, and EI-MS, and evaluated for α-amylase inhibition. Except compound 11 all analogs showed α-amylase inhibitory activity with IC50 values from 1.709 ± 0.12 to 3.049 ± 0.25 μM against the standard acarbose (IC50 = 1.637 ± 0.153 μM). Compounds 1, 10, 14, and 20 exhibited outstanding inhibitory potential with IC50 value 1.763 ± 0.03, 1.747 ± 0.20, 1.709 ± 0.12, and 1.948 ± 0.23 μM, respectively, compared with the standard acarbose. Structure activity relationships have been established for the active compounds. To get an idea about the binding interaction of the compounds, molecular docking studies were done.


Author(s):  
Noor Barak Almandil ◽  
Muhammad Taha ◽  
Rai Khalid Farooq ◽  
Amani Alhibshi ◽  
Mohamed Ibrahim ◽  
...  

We have synthesized quinoxaline analogs (1-25), characterized by 1HNMR and HREI-MS and evaluated for thymidine phosphorylase inhibition. Among the series, nineteen analogs showed better inhibition when compared with the standard inhibitor 7-Deazaxanthine (IC50 = 38.68 ± 4.42 µM). The most potent analog among the series is analog 25 with IC50 value 3.20 ± 0.10 µM. Sixteen analogs 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 21and 24 showed outstanding inhibition which is many folds better than the standard 7-Deazaxanthine. Two analogs 8 and 9 showed moderate inhibition. A structure- activity relationship has been established mainly based upon the substitution pattern on the phenyl ring. The binding interactions of the active compounds were confirmed through molecular docking studies.


2021 ◽  
Vol 14 (7) ◽  
pp. 685
Author(s):  
Sandra Amanda Kozieł ◽  
Monika Katarzyna Lesiów ◽  
Daria Wojtala ◽  
Edyta Dyguda-Kazimierowicz ◽  
Dariusz Bieńko ◽  
...  

A group of cytotoxic half-sandwich iridium(III) complexes with aminomethyl(diphenyl)phosphine derived from fluoroquinolone antibiotics exhibit the ability to (i) accumulate in the nucleus, (ii) induce apoptosis, (iii) activate caspase-3/7 activity, (iv) induce the changes in cell cycle leading to G2/M phase arrest, and (v) radicals generation. Herein, to elucidate the cytotoxic effects, we investigated the interaction of these complexes with DNA and serum proteins by gel electrophoresis, fluorescence spectroscopy, circular dichroism, and molecular docking studies. DNA binding experiments established that the complexes interact with DNA by moderate intercalation and predominance of minor groove binding without the capability to cause a double-strand cleavage. The molecular docking study confirmed two binding modes: minor groove binding and threading intercalation with the fluoroquinolone part of the molecule involved in pi stacking interactions and the Ir(III)-containing region positioned within the major or minor groove. Fluorescence spectroscopic data (HSA and apo-Tf titration), together with molecular docking, provided evidence that Ir(III) complexes can bind to the proteins in order to be transferred. All the compounds considered herein were found to bind to the tryptophan residues of HSA within site I (subdomain II A). Furthermore, Ir(III) complexes were found to dock within the apo-Tf binding site, including nearby tyrosine residues.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Oluwasegun Bamidele ◽  
George Oche Ambrose ◽  
Oluwaseun Suleiman Alakanse

AbstractHSP90 is observed as one of the copious molecular chaperones that play a key role in mediating appropriate folding, maturation, and firmness of many client proteins in cells. The expression rate of HSP90 in cancer cells is at a level of 2- to 10-fold higher than the 1- to 2-fold of its unstressed and healthy ones. To combat this, several inhibitors to HSP90 protein have been studied (such as geldanamycin and its derivative 17-AAG and 17-DMAG) and have shown some primary side effects including plague, nausea, vomiting, and liver toxicity, hence the search for the best-in-class inhibitor for this protein through in silico. This study is aimed at analyzing the inhibitory potency of oxypeucedanin-a furocoumarin derivations, which have been reported to have antipoliferative activity in human prostrate carcinoma DN145 cells, and three other drug candidates retrieved from the literature via computational docking studies. The results showed oxypeucedanin as the compound with the highest binding energy of −9.2 kcal/mol. The molecular docking study was carried out using PyRx, Auto Dock Vina option, and the target was validated to confirm the proper target and the docking procedure employed for this study.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 208
Author(s):  
Ahlam Elwekeel ◽  
Dalia El Amir ◽  
Enas I. A. Mohamed ◽  
Elham Amin ◽  
Marwa H. A. Hassan ◽  
...  

The current study accentuates the significance of performing the multiplex approach of LC-HRESIMS, biological activity, and docking studies in drug discovery, taking into consideration a review of the literature. In this regard, the investigation of antioxidant and cytotoxic activities of Trigonella stellata collected from the Egyptian desert revealed a significant antioxidant capacity using DPPH with IC50 = 656.9 µg/mL and a moderate cytotoxicity against HepG2, MCF7, and CACO2, with IC50 values of 53.3, 48.3, and 55.8 µg/mL, respectively. The evaluation of total phenolic and flavonoid contents resulted in 32.8 mg GAE/g calculated as gallic acid equivalent and 5.6 mg RE/g calculated as rutin equivalent, respectively. Chemical profiling of T. stellata extract, using LC-HRESIMS analysis, revealed the presence of 15 metabolites, among which eleven compounds were detected for the first time in this species. Interestingly, in vitro testing of the antidiabetic activity of the alcoholic extract noted an α-glucosidase enzyme inhibitory activity (IC50 = 559.4 µg/mL) better than that of the standard Acarbose (IC50 = 799.9 µg/mL), in addition to a moderate inhibition of the α-amylase enzyme (IC50 = 0.77 µg/mL) compared to Acarbose (IC50 = 0.21 µg/mL). α-Glucosidase inhibition was also virtualized by binding interactions through the molecular docking study, presenting a high binding activity of six flavonoid glycosides, as well as the diterpenoid compound graecumoside A and the alkaloid fenugreekine. Taken together, the conglomeration of LC-HRESIMS, antidiabetic activity, and molecular docking studies shed light on T. stellata as a promising antidiabetic herb.


2021 ◽  
Vol 25 (4) ◽  
pp. 497-502
Author(s):  
D. Shehu ◽  
S Danlami ◽  
M. Ya’u ◽  
A. Babandi ◽  
H.M. Yakasai ◽  
...  

Glutathione s-transferases(GSTs) are enzymes involved in the conjugation and deactivation of various xenobiotics including drugs. Thisin-silico study was undertaken in order to investigate the interaction between beta-class glutathione s-transferase and five selected antibiotics, namely; ampicillin, tetracycline, chloramphenicol, ciprofloxacin and cephalexin using molecular docking study. RaptorX server was used to predict the amino acids involved at the binding sitewhile molecular docking study was employed in order to investigate the binding interactions.RaptorX predicted several amino acids which were different from the ones observed in molecular docking because of the variability in the substrate binding site of GSTs however, all the amino acids predicted by RaptorX were also found to be involved in the GSH binding.Lys107, Phe109, Ser110, Leu113, Trp114, His115 and Arg123, Leu168 were the amino acids involved in the binding of various antibiotics to the substrate binding site of the protein while Ala9, Cys10, Leu32, Tyr51, Val52, Pro53, Glu65 and Ala66were involved in the binding of the co-substrate GSH to the binding site of the protein. The results indicated that all the antibiotics showed a good binding affinity with the beta class GST and are therefore capable of deactivating the drugs. With these, finding a beta class GST inhibitors alongside antibiotics during a treatment of diseases will be of beneficial in the current fight against antibiotic resistance.


2020 ◽  
Vol 32 (6) ◽  
pp. 1482-1490
Author(s):  
Manju Mathew ◽  
Raja Chinnamanayakar ◽  
Ezhilarasi Muthuvel Ramanathan

A series of 1-(5-(5-(4-chlorophenyl)furan-2-yl)-4,5-dihyropyrazol-1-yl ethanone (5a-h) was synthesized through E-(3-(5-(4-chloro-phenyl)furan-2-yl)-1-phenylprop-2-en-1-one (3a-h) with hydrazine monohydrate and sodium acetate. Totally, eight compounds were synthesized and their structures were elucidated by infrared, 1H & 13C NMR, elemental analysis, antimicrobial studies, in silico molecular docking studies and also in silico ADME prediction. Antimicrobial studies of the synthesized compounds showed good to moderate activity against the all the stains compared with standard drugs. in silico Molecular docking study was carried out using bacterial protein and BC protein. Synthesized compounds (5a-h) showed good docking score compared with ciprofloxacin. Antimicrobial study was carried out for 4-chlorophenyl furfuran pyrazole derivatives (5a-h). The results of assessment of toxicities, drug likeness and drug score profiles of compounds (5a-j) are promising


Author(s):  
Mohammad Rizki Fadhil Pratama ◽  
Tutus Gusdinar

Objectives: This study aims to find the relationship between artemisinins and neuraminidase (NA) with molecular docking study and also to determine the most potent NA inhibitor from artemisinin and derivatives.Methods: All ligands were sketched and optimized using Gaussian 03W with Hartree-Fock method basis sets 6-311G. Molecular docking was performed using AutoDock 4.2.3 toward NA in complexes with oseltamivir as co-crystal ligand. The main parameters used were the free energy of binding (ΔG) and dissociation constant (Ki) as affinity marker.Results: Artesunate provided most negative free ΔG and lowest Ki toward NA with −9.55 kcal/mol and 100.66 nM, respectively. Artesunate shows higher affinity than oseltamivir with interactions between artesunate and amino acids at position 246 had important influences on artesunate affinity toward NA from H5N1.Conclusion: In silico molecular docking results indicated that artesunate could be considered as NA inhibitor and should be potential to be developed as anti-influenza particularly to H5N1 with oseltamivir resistance.


Sign in / Sign up

Export Citation Format

Share Document