scholarly journals Industrial Robot Control by Means of Gestures and Voice Commands in Off-Line and On-Line Mode

Author(s):  
Wojciech Kaczmarek ◽  
Jarosław Panasiuk ◽  
Szymon Borys ◽  
Patryk Banach

The paper presents the possibility of using KINECT v2 module to control an industrial robot by means of gestures and voice commands. It describes elements of creating software for off-line and on-line robot control. The application for KINECT module was developed in C# language in Visual Studio environment, while the industrial robot control program was developed in RAPID language in RobotStudio environment. The development of a two-threaded application in RAPID language allowed to separate two independent tasks for the IRB120 robot. The main task of the robot is performed in thread no. 1 (responsible for movement). Simultaneously working thread no. 2 ensures continuous communication with the KINECT system and provides information about the gesture and voice commands in real time without any interference in thread no. 1. The applied solution allows the robot to work in industrial conditions without negative impact of communication task on the time of robot’s work cycles. Thanks to the development of a digital twin of the real robot station, tests of proper application functioning in off-line mode (without using a real robot) were conducted. Obtained results were verified online (on the real test station). Tests of correctness of gesture recognition were carried out, the robot recognized all programmed gestures. Another test carried out was the recognition and execution of voice commands. A difference in the time of task completion between the actual and virtual station was noticed - the average difference was 0.67 s. The last test carried out was to examine the impact of interference on the recognition of voice commands. With a 10dB difference between the command and noise, the recognition of voice commands was equal to 91.43%. The developed computer programs have a modular structure, which enables easy adaptation to process requirements.

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6358
Author(s):  
Wojciech Kaczmarek ◽  
Jarosław Panasiuk ◽  
Szymon Borys ◽  
Patryk Banach

The paper presents the possibility of using the Kinect v2 module to control an industrial robot by means of gestures and voice commands. It describes the elements of creating software for off-line and on-line robot control. The application for the Kinect module was developed in the C# language in the Visual Studio environment, while the industrial robot control program was developed in the RAPID language in the RobotStudio environment. The development of a two-threaded application in the RAPID language allowed separating two independent tasks for the IRB120 robot. The main task of the robot is performed in Thread No. 1 (responsible for movement). Simultaneously, Thread No. 2 ensures continuous communication with the Kinect system and provides information about the gesture and voice commands in real time without any interference in Thread No. 1. The applied solution allows the robot to work in industrial conditions without the negative impact of the communication task on the time of the robot’s work cycles. Thanks to the development of a digital twin of the real robot station, tests of proper application functioning in off-line mode (without using a real robot) were conducted. The obtained results were verified on-line (on the real test station). Tests of the correctness of gesture recognition were carried out, and the robot recognized all programmed gestures. Another test carried out was the recognition and execution of voice commands. A difference in the time of task completion between the actual and virtual station was noticed; the average difference was 0.67 s. The last test carried out was to examine the impact of interference on the recognition of voice commands. With a 10 dB difference between the command and noise, the recognition of voice commands was equal to 91.43%. The developed computer programs have a modular structure, which enables easy adaptation to process requirements.


2012 ◽  
Vol 463-464 ◽  
pp. 1654-1657 ◽  
Author(s):  
Florin Gîrbacia ◽  
Mihai Duguleana ◽  
Adrian Stavar

This paper presents a methodology and a prototype system for off-line programming of an industrial robot using augmented reality technology. The system allows to control a virtual model of the industrial robot co-located in the real environment, planning for collision-free paths, generate robot program and simulate the robot actions before the real robot perform the task. The advantage of this system is use of inexpensive equipment for intuitive off-line programming of an industrial robot.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2439
Author(s):  
Wojciech Kaczmarek ◽  
Bartłomiej Lotys ◽  
Szymon Borys ◽  
Dariusz Laskowski ◽  
Piotr Lubkowski

The article presents the possibility of using a graphics tablet to control an industrial robot. The paper presents elements of software development for offline and online control of a robot. The program for the graphic tablet and the operator interface was developed in C# language in Visual Studio environment, while the program controlling the industrial robot was developed in RAPID language in the RobotStudio environment. Thanks to the development of a digital twin of the real robotic workstation, tests were carried out on the correct functioning of the application in offline mode (without using the real robot). The obtained results were verified in online mode (on a real production station). The developed computer programmes have a modular structure, which makes it possible to easily adapt them to one’s needs. The application allows for changing the parameters of the robot and the parameters of the path drawing. Tests were carried out on the influence of the sampling frequency and the tool diameter on the quality of the reconstructed trajectory of the industrial robot. The results confirmed the correctness of the application. Thanks to the new method of robot programming, it is possible to quickly modify the path by the operator, without the knowledge of robot programming languages. Further research will focus on analyzing the influence of screen resolution and layout scale on the accuracy of trajectory generation.


Author(s):  
João Pedro Carvalho de Souza ◽  
André Luiz Castro ◽  
Luís F. Rocha ◽  
Manuel F. Silva

Purpose This paper aims to propose a translation library capable of generating robots proprietary code after their offline programming has been performed in a software application, named AdaptPack Studio, running over a robot simulation and offline programming software package. Design/methodology/approach The translation library, named AdaptPack Studio Translator, is capable to generate proprietary code for the Asea Brown Boveri, FANUC, Keller und Knappich Augsburg and Yaskawa Motoman robot brands, after their offline programming has been performed in the AdaptPack Studio application. Findings Simulation and real tests were performed showing an improvement in the creation, operation, modularity and flexibility of new robotic palletizing systems. In particular, it was verified that the time needed to perform these tasks significantly decreased. Practical implications The design and setup of robotics palletizing systems are facilitated by an intuitive offline programming system and by a simple export command to the real robot, independent of its brand. In this way, industrial solutions can be developed faster, in this way, making companies more competitive. Originality/value The effort to build a robotic palletizing system is reduced by an intuitive offline programming system (AdaptPack Studio) and the capability to export command to the real robot using the AdaptPack Studio Translator. As a result, companies have an increase in competitiveness with a fast design framework. Furthermore, and to the best of the author’s knowledge, there is also no scientific publication formalizing and describing how to build the translators for industrial robot simulation and offline programming software packages, being this a pioneer publication in this area.


2010 ◽  
Vol 07 (04) ◽  
pp. 587-607 ◽  
Author(s):  
JOSÉ L. LIMA ◽  
JOSÉ C. GONÇALVES ◽  
PAULO G. COSTA ◽  
A. PAULO MOREIRA

This article describes a joint trajectory optimized controller developed in a humanoid robot simulator following the real robot characteristics. As simulation is a powerful tool for speeding up the control software development, the proposed accurate simulator allows to fulfill this goal. The simulator, based on the Open Dynamics Engine and GLScene graphics library, provides instant visual feedback. The proposed simulator, with realistic dynamics, allows to design and test behaviors and control strategies without access to the real hardware in order to carry out research on robot control without damaging the real robot. The low-level joints controller techniques, such as acceleration, speed, and energy consumption minimization, are discussed and experimental results are presented in order to validate the proposed simulator.


2015 ◽  
Vol 734 ◽  
pp. 168-171
Author(s):  
Xing Ze Li ◽  
Ling Zhu ◽  
Yi Hua

Aim at the real-time problem of industrial robot vision system, design a embedded robot vision system based on DSP microprocessor. This system can use CCD camera and the ultrasonic sensor to collect the target environment information. It also can use the processor DSP to process the images and recognize target. And then through the communication module, send results in the form of wireless to the upper computer, providing target object information for robot control layer. This system completes the software and hardware system design, image collection & processing and robot control, as well as meet the real-time requirements of machine vision system.


2020 ◽  
Vol 63 (4) ◽  
pp. 1299-1311 ◽  
Author(s):  
Timothy Beechey ◽  
Jörg M. Buchholz ◽  
Gitte Keidser

Objectives This study investigates the hypothesis that hearing aid amplification reduces effort within conversation for both hearing aid wearers and their communication partners. Levels of effort, in the form of speech production modifications, required to maintain successful spoken communication in a range of acoustic environments are compared to earlier reported results measured in unaided conversation conditions. Design Fifteen young adult normal-hearing participants and 15 older adult hearing-impaired participants were tested in pairs. Each pair consisted of one young normal-hearing participant and one older hearing-impaired participant. Hearing-impaired participants received directional hearing aid amplification, according to their audiogram, via a master hearing aid with gain provided according to the NAL-NL2 fitting formula. Pairs of participants were required to take part in naturalistic conversations through the use of a referential communication task. Each pair took part in five conversations, each of 5-min duration. During each conversation, participants were exposed to one of five different realistic acoustic environments presented through highly open headphones. The ordering of acoustic environments across experimental blocks was pseudorandomized. Resulting recordings of conversational speech were analyzed to determine the magnitude of speech modifications, in terms of vocal level and spectrum, produced by normal-hearing talkers as a function of both acoustic environment and the degree of high-frequency average hearing impairment of their conversation partner. Results The magnitude of spectral modifications of speech produced by normal-hearing talkers during conversations with aided hearing-impaired interlocutors was smaller than the speech modifications observed during conversations between the same pairs of participants in the absence of hearing aid amplification. Conclusions The provision of hearing aid amplification reduces the effort required to maintain communication in adverse conditions. This reduction in effort provides benefit to hearing-impaired individuals and also to the conversation partners of hearing-impaired individuals. By considering the impact of amplification on both sides of dyadic conversations, this approach contributes to an increased understanding of the likely impact of hearing impairment on everyday communication.


Author(s):  
Maria Giulia Ballatore ◽  
Ettore Felisatti ◽  
Laura Montanaro ◽  
Anita Tabacco

This paper is aimed to describe and critically analyze the so-called "TEACHPOT" experience (POT: Provide Opportunities in Teaching) performed during the last few years at Politecnico di Torino. Due to career criteria, the effort and the time lecturers spend in teaching have currently undergone a significant reduction in quantity. In order to support and meet each lecturers' expectations towards an improvement in their ability to teach, a mix of training opportunities has been provided. This consists of an extremely wide variety of experiences, tools, relationships, from which everyone can feel inspired to increase the effectiveness of their teaching and the participation of their students. The provided activities are designed around three main components: methodological training, teaching technologies, methodological experiences. A discussion on the findings is included and presented basing on the data collected through a survey. The impact of the overall experience can be evaluated on two different levels: the real effect on redesigning lessons, and the discussion on the matter within the entire academic community.


Sign in / Sign up

Export Citation Format

Share Document