scholarly journals Effectiveness Regarding Hantavirus Detection in Rodent Tissue Samples and Urine

Author(s):  
Mónika Madai ◽  
Győző Horváth ◽  
Róbert Herczeg ◽  
Balázs Somogyi ◽  
Brigitta Zana ◽  
...  

The natural hosts regarding Orthohantaviruses are rodents, soricomorphs and bats, and it is well known they may cause serious or even fatal diseases among humans worldwide. The virus is persistent among animals and it is shed via urine, saliva and feces, throughout the entirety of their lives. We aim to identify the effectiveness regarding hantavirus detection from rodent tissue samples and urine originating from naturally infected rodents. Initially, animals were trapped at five distinct locations throughout the Transdanubian region in Hungary. Lung, liver, kidney and urine samples were obtained from 163 perished animals. All organs and urine were tested using nested reverse transcriptase-polymerase chain reaction (nRT-PCR). Furthermore, sera were examined for IgG antibodies against DOBV and PUUV viruses by Western Blot assay. IgG antibodies against hantaviruses and/or nucleic acid were detected in 25 (15.3%) cases. Among Apodemus, Myodes, and Microtus rodent species, DOBV, PUUV, TULV were all clearly identified. The virus nucleic acid was detected most effectively from the kidney (100%), while only 55% of screened lung tissues were positive. Interestingly, only 3 out of 20 rodent urine samples were positive regarding nRT-PCR. Moreover, five rodents were seropositive without detectable virus nucleic acid from any of the tested organs.

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 570
Author(s):  
Mónika Madai ◽  
Győző Horváth ◽  
Róbert Herczeg ◽  
Balázs Somogyi ◽  
Brigitta Zana ◽  
...  

The natural hosts of Orthohantaviruses are rodents, soricomorphs and bats, and it is well known that they may cause serious or even fatal diseases among humans worldwide. The virus is persistent among animals and it is shed via urine, saliva and feces throughout the entirety of their lives. We aim to identify the effectiveness of hantavirus detection in rodent tissue samples and urine originating from naturally infected rodents. Initially, animals were trapped at five distinct locations throughout the Transdanubian region in Hungary. Lung, liver, kidney and urine samples were obtained from 163 deceased animals. All organs and urine were tested using nested reverse transcription polymerase chain reaction (nRT-PCR). Furthermore, sera were examined for IgG antibodies against Dobrava–Belgrade virus (DOBV) and Puumala virus (PUUV) by Western blot assay. IgG antibodies against hantaviruses and/or nucleic acid were detected in 25 (15.3%) cases. Among Apodemus, Myodes, and Microtus rodent species, DOBV, PUUV and Tula virus (TULV) were clearly identified. Amid the PCR-positive samples, the nucleic acid of the viruses was detected most effectively in the kidney (100%), while only 55% of screened lung tissues were positive. Interestingly, only three out of 20 rodent urine samples were positive when tested using nRT-PCR. Moreover, five rodents were seropositive without detectable virus nucleic acid in any of the tested organs.


1997 ◽  
Vol 9 (4) ◽  
pp. 347-351 ◽  
Author(s):  
Shucheng Zhang ◽  
Wenzhi Xue ◽  
Charles Wood ◽  
Qi-Min Chen ◽  
Sanjay Kapil ◽  
...  

A western blot assay using purified recombinant bovine immunodeficiency virus gag protein has been developed for detection of bovine immunodeficiency virus antibodies in bovine serum samples. The test was standardized with known bovine immunodeficiency virus positive and negative bovine serum samples and the monoclonal antibody to gag protein. Both naturally and experimentally infected cattle sera demonstrated positive test results. The result of western blot assay was compared with polymerase chain reaction test results in 134 blood samples collected from Kansas. Twenty-six samples tested positive for bovine immunodeficiency virus DNA with polymerase chain reaction (18.7%) and 25 were positive for the antibody to gag protein by western blot analysis (17.9%). Of 26 cattle testing positive using the polymerase chain reaction assay, 24 were antibody-positive by western blot assay, thus establishing a strong correlation between the two tests. The sensitivity and specificity of western blot relative to polymerase chain reaction are 0.92 and 0.99, respectively. The western blot assay proved to be a specific and sensitive test.


1991 ◽  
Vol 66 (04) ◽  
pp. 500-504 ◽  
Author(s):  
H Peretz ◽  
U Seligsohn ◽  
E Zwang ◽  
B S Coller ◽  
P J Newman

SummarySevere Glanzmann's thrombasthenia is relatively frequent in Iraqi-Jews and Arabs residing in Israel. We have recently described the mutations responsible for the disease in Iraqi-Jews – an 11 base pair deletion in exon 12 of the glycoprotein IIIa gene, and in Arabs – a 13 base pair deletion at the AG acceptor splice site of exon 4 on the glycoprotein IIb gene. In this communication we show that the Iraqi-Jewish mutation can be identified directly by polymerase chain reaction and gel electrophoresis. With specially designed oligonucleotide primers encompassing the mutation site, an 80 base pair segment amplified in healthy controls was clearly distinguished from the 69 base pair segment produced in patients. Patients from 11 unrelated Iraqi-Jewish families had the same mutation. The Arab mutation was identified by first amplifying a DNA segment consisting of 312 base pairs in controls and of 299 base pairs in patients, and then digestion by a restriction enzyme Stu-1, which recognizes a site that is absent in the mutant gene. In controls the 312 bp segment was digested into 235 and 77 bp fragments, while in patients there was no change in the size of the amplified 299 bp segment. The mutation was found in patients from 3 out of 5 unrelated Arab families. Both Iraqi-Jewish and Arab mutations were detectable in DNA extracted from blood and urine samples. The described simple methods of identifying the mutations should be useful for detection of the numerous potential carriers among the affected kindreds and for prenatal diagnosis using DNA extracted from chorionic villi samples.


2009 ◽  
Vol 21 (5) ◽  
pp. 701-706 ◽  
Author(s):  
Ho To ◽  
Tomohiro Koyama ◽  
Shinya Nagai ◽  
Kotaro Tuchiya ◽  
Tetsuo Nunoya

Quantitative real-time polymerase chain reaction (qPCR) assays were developed and validated in combination with enrichment culture for the detection and discrimination of Erysipelothrix rhusiopathiae and other Erysipelothrix species from tissue samples. The targets for SYBR green qPCR assays were the 16S ribosomal RNA gene for Erysipelothrix species and a gene involved in capsular formation for E. rhusiopathiae. The specificity of the assays was assessed with Erysipelothrix species and other related bacterial species. The limit of detection was found to be 5 colony-forming units per reaction. Amplification of DNA extracted from spleen and joint samples spiked with increasing quantities of Erysipelothrix cells was shown to be equally sensitive to DNA extracted from a pure bacterial culture. The assays were evaluated with 88 tissue samples from 3 experimentally infected pigs and 50 mice and with 36 tissue samples from 3 naturally infected pigs and 11 noninfected pigs. Results were compared with those of direct qPCR and conventional culture. The qPCR after enrichment increased the diagnostic sensitivity over that of culture and qPCR, thereby significantly reducing the total time taken for the detection of E. rhusiopathiae and other Erysipelothrix species. Therefore, this technique could be used for practical applications.


2003 ◽  
Vol 127 (2) ◽  
pp. 213-217 ◽  
Author(s):  
Jennifer L. Hunt ◽  
Patricia Swalsky ◽  
E. Sasatomi ◽  
Laura Niehouse ◽  
Anke Bakker ◽  
...  

Abstract Context.—A recurring problem in surgical pathology practice is specimen mix-up and floater contamination. While many cases can be resolved histologically, a significant number remain unclear and may have serious clinical and medicolegal implications. Objectives.—To design a microdissection and genotyping assay to identify contaminating floater tissues in paraffin-embedded tissues that is optimized for small samples, and to use the assay to resolve a series of clinical cases with floater tissues. Materials and Methods.—Twenty-one cases of possible tissue floater contamination in paraffin-embedded tissue blocks were included. Using 4 unstained, 4-μm-thick histologic sections, multiple sites were microdissected under direct visualization either by hand or by laser capture microdissection. Nonneoplastic and neoplastic tissues were sampled. Polymerase chain reaction was performed for a panel of 10 polymorphic microsatellite markers at 1p34, 3p26, 5q21, 9p21, 10q23, and 17p13. Allele size and content were analyzed semiquantitatively by fluorescent capillary electrophoresis, and the genotypes for the tissues in the paraffin-embedded tissue blocks were compared for identity. Results.—Tissue identification was successful in all cases, despite small tissue sample size and fixation effects. Comparative analysis of neoplastic tissue floaters and the presumptive source tumor was performed when possible to control for possible allelic loss or microsatellite instability. Conclusions.—Microdissection and genotyping are effective and reliable means to objectively resolve problems of possible floater contamination. Even minute tissue samples provide sufficient DNA template for polymerase chain reaction microsatellite analysis. Because of the potential clinical implications of floaters, we recommend that all suspected floaters that would change a diagnosis from benign to malignant be subjected to genotyping assay to confirm the identity of the floater tissue.


Sign in / Sign up

Export Citation Format

Share Document