scholarly journals The Nerves to Conduct a Multiple Sclerosis Crime Investigation

Author(s):  
Sameeksha Chopra ◽  
Zoe Myers ◽  
Henna Sekhon ◽  
Antoine Dufour

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative autoimmune disease characterized by aberrant infiltration of immune cells into the central nervous system (CNS) and by the loss of myelin. Sclerotic lesions and various inhibitory factors hamper remyelination processes within the CNS. MS patients typically experience gradual cognitive and physical disabilities as the disease progresses. The etiology of MS is still unclear and emerging evidence suggests that microbiome composition could play a much more significant role in disease pathogenesis than was initially thought. Initially believed to be isolated to the gut microenvironment, we now know that the microbiome plays a much broader role in various tissues and is essential in the development of the immune system. Here, we present some of the unexpected roles that the microbiome plays in MS and discuss approaches for the development of next-generation treatment strategies.

2021 ◽  
Vol 22 (5) ◽  
pp. 2498
Author(s):  
Sameeksha Chopra ◽  
Zoë Myers ◽  
Henna Sekhon ◽  
Antoine Dufour

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative autoimmune disease characterized by the aberrant infiltration of immune cells into the central nervous system (CNS) and by the loss of myelin. Sclerotic lesions and various inhibitory factors hamper the remyelination processes within the CNS. MS patients typically experience gradual cognitive and physical disabilities as the disease progresses. The etiology of MS is still unclear and emerging evidence suggests that microbiome composition could play a much more significant role in disease pathogenesis than was initially thought. Initially believed to be isolated to the gut microenvironment, we now know that the microbiome plays a much broader role in various tissues and is essential in the development of the immune system. Here, we present some of the unexpected roles that the microbiome plays in MS and discuss approaches for the development of next-generation treatment strategies.


Author(s):  
Sameeksha Chopra ◽  
Zoe Myers ◽  
Henna Sekhon ◽  
Antoine Dufour

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative autoimmune disease characterized by aberrant infiltration of immune cells into the central nervous system (CNS) and by the loss of myelin. Sclerotic lesions and various inhibitory factors hamper remyelination processes within the CNS. MS patients typically experience gradual cognitive and physical disabilities as the disease progresses. The etiology of MS is still unclear and emerging evidence suggests that microbiome composition could play a much more significant role in disease pathogenesis than was initially thought. Initially believed to be isolated to the gut microenvironment, we now know that the microbiome plays a much broader role in various tissues and is essential in the development of the immune system. Here, we present some of the unexpected roles that the microbiome plays in MS and discuss approaches for the development of next-generation treatment strategies.


2016 ◽  
Vol 2 ◽  
pp. 205521731664998
Author(s):  
Kira Groen ◽  
Vicki E Maltby ◽  
Katherine A Sanders ◽  
Rodney J Scott ◽  
Lotti Tajouri ◽  
...  

Multiple sclerosis (MS) is an autoimmune disease characterised by lymphocytic infiltration of the central nervous system and subsequent destruction of myelin and axons. On the background of a genetic predisposition to autoimmunity, environmental triggers are assumed to initiate the disease. The majority of MS research has focused on the pathological involvement of lymphocytes and other immune cells, yet a paucity of attention has been given to erythrocytes, which may play an important role in MS pathology. The following review briefly summarises how erythrocytes may contribute to MS pathology through impaired antioxidant capacity and altered haemorheological features. The effect of disease-modifying therapies on erythrocytes is also reviewed. It may be important to further investigate erythrocytes in MS, as this could broaden the understanding of the pathological mechanisms of the disease, as well as potentially lead to the discovery of novel and innovative targets for future therapies.


2021 ◽  
Author(s):  
◽  
Maddie Griffiths

<p><b>The central nervous system was traditionally considered an immune-privileged site, defined as being immunologically inactive. However, recent studies have elucidated that a number of immune cells traffic into and out of the brain in healthy humans to conduct routine immunosurveillance. A unique immunological interface, the choroid plexus, acts as a gatekeeper for the entry of these immune cells during homeostasis. Although the mechanisms are not well described, the choroid plexus also has the capacity to regulate the responses of migrating leukocytes during inflammation.</b></p> <p>Multiple sclerosis is a complex neuroinflammatory disease characterized by demyelination in the CNS. Autoreactive immune cells invade the central nervous system and orchestrate an attack against myelin sheathes, the insulation layer that protects neurons. The disease affects nearly 1 in 1,000 New Zealanders, and currently has no cure. The most successful treatments for multiple sclerosis target the initial stages by inhibiting the entry of these cells into the central nervous system, however these are often associated with severe side and life-threatening effects and cannot prevent the progression of the disease.</p> <p>Heparanase, the ubiquitously expresses heparan sulfate degrading enzyme has been thoroughly implicated in the disease processes of multiple sclerosis, and its animal model, EAE. Autoreactive lymphocytes exploit heparanase activity to degrade the extracellular matrix and destabilize the barriers that maintain the relative immune privileged status of the central nervous system. Exogenous heparan sulfate mimetics have previously been shown to ameliorate symptoms of EAE by interfering with heparanase activity. However, the commercialization and clinical translation of these inhibitors is currently inhibited by the complexity of their synthesis. ‘HS16-35’ is a novel heparan sulfate mimetic developed by the Ferrier Institute, comprised of a dendritic core with four heavily sulfated oligosaccharide arms. The synthesis of this compound is much shorter due to its smaller size; however, it has been shown to act similarly to native heparan sulfate molecules. We proposed that HS16-35 is protective in preventing the migration of autoreactive immune cells across the choroid plexus by inhibiting lymphocyte heparanase.</p> <p>To investigate the efficacy of HS16-35 in vitro, we first established an experimental transwell model of the choroid plexus. This model incorporated core components of the choroid plexus, including fenestrated capillaries, the stromal matrix and epithelial monolayer. We first showed that the model was capable of mimicking homeostatic trafficking across the choroid plexus epithelium, which formed a selective but permeable barrier. Then, we induced T-cell specific inflammatory migration using Concanavalin A or TH1-type cytokines. This migration was found to be interferon-γ dependent and could be mitigated with anti-interferon-γ treatment.</p> <p>Once this model was established, we next investigated whether HS16-35 was effective in inhibiting inflammatory migration across this structure. To adapt HS16-35 to an in vitro dose, we performed cell viability assays. This confirmed that the compound was mildly cytotoxic to epithelial choroid plexus cells but not murine splenocytes. Further experiments found that low-dose HS16-35 did not impact monolayer permeability. Transwell migration assays showed that low-dose HS16-35 was effective in reducing ConA and interferon-γ mediated inflammatory T-cell migration to a level comparable to homeostatic trafficking. Finally, we assessed cytokine profiles of leukocytes and epithelial choroid plexus cells treated with HS16 35 and found that HS16-35 reduced the expression of key cytokines involved in MS pathogenesis.</p> <p>In summary, the work described in this thesis shows how HS16-35 may be protective during EAE by suppressing the inflammatory response of autoreactive T-cells, in addition to regulating the infiltration of immune cells into the CNS through the choroid plexus. In a broader sense, these findings show that HS16 36 may be effective in treating MS by regulating, not inhibiting lymphocyte migration into the CNS, mitigating some of the severe side effects that other migration-inhibitors face.</p>


2012 ◽  
Vol 199 (3) ◽  
pp. 413-416 ◽  
Author(s):  
Lawrence Steinman

Multiple sclerosis (MS) is the major inflammatory demyelinating disease of the central nervous system. There is strong evidence that an immune response in the brain is a critical component of the disease. In 1992, in a collaboration between academia and biotechnology, my colleagues and I showed that α4 integrin was the critical molecule involved in the homing of immune cells into the inflamed brain. Was it sheer luck that these results led to the development of a drug for MS?


Author(s):  
Sofía Rodríguez Murúa ◽  
Mauricio F. Farez ◽  
Francisco J. Quintana

Multiple sclerosis (MS) is a chronic autoimmune, inflammatory, and neurodegenerative disease that affects the central nervous system (CNS). MS is characterized by immune dysregulation, which results in the infiltration of the CNS by immune cells, triggering demyelination, axonal damage, and neurodegeneration. Although the exact causes of MS are not fully understood, genetic and environmental factors are thought to control MS onset and progression. In this article, we review the main immunological mechanisms involved in MS pathogenesis. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lisa Zondler ◽  
Sebastian Herich ◽  
Petra Kotte ◽  
Katharina Körner ◽  
Tilman Schneider-Hohendorf ◽  
...  

Multiple sclerosis is a chronic auto-inflammatory disease of the central nervous system affecting patients worldwide. Neuroinflammation in multiple sclerosis is mainly driven by peripheral immune cells which invade the central nervous system and cause neurodegenerative inflammation. To enter the target tissue, immune cells have to overcome the endothelium and transmigrate into the tissue. Numerous molecules mediate this process and, as they determine the tissue invasiveness of immune cells, display great therapeutic potential. Melanoma cell adhesion molecule (MCAM) is a membrane-anchored glycoprotein expressed by a subset of T-cells and MCAM+ T-cells have been shown to contribute to neuroinflammation in multiple sclerosis. The role of the MCAM molecule for brain invasion, however, remained largely unknown. In order to investigate the role of the MCAM molecule on T-cells, we used different in vitro and in vivo assays, including ex vivo flow chambers, biochemistry and microscopy experiments of the mouse brain. We demonstrate that MCAM directly mediates adhesion and that the engagement of MCAM induces intracellular signaling leading to β1-integrin activation on human T-cells. Furthermore, we show that MCAM engagement triggers the phosphorylation of PLCγ1 which is required for integrin activation and thus amplification of the cellular adhesive potential. To confirm the physiological relevance of our findings in vivo, we demonstrate that MCAM plays an important role in T-cell recruitment into the mouse brain. In conclusion, our data demonstrate that MCAM expressed on T-cells acts as an adhesion molecule and a signaling receptor that may trigger β1-integrin activation via PLCγ1 upon engagement.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Alan M. Palmer

The central nervous system (CNS) is isolated from the blood system by a physical barrier that contains efflux transporters and catabolic enzymes. This blood-CNS barrier (BCNSB) plays a pivotal role in the pathophysiology of multiple sclerosis (MS). It binds and anchors activated leukocytes to permit their movement across the BCNSB and into the CNS. Once there, these immune cells target particular self-epitopes and initiate a cascade of neuroinflammation, which leads to the breakdown of the BCNSB and the formation of perivascular plaques, one of the hallmarks of MS. Immunomodulatory drugs for MS are either biologics or small molecules, with only the latter having the capacity to cross the BCNSB and thus have a propensity to cause CNS side effects. However, BCNSB penetration is a desirable feature of MS drugs that have molecular targets within the CNS. These are nabiximols and dalfampridine, which target cannabinoid receptors and potassium channels, respectively. Vascular cell adhesion molecule-1, present on endothelial cells of the BCNSB, also serves as a drug discovery target since it interacts with α4-β1-integrin on leucocytes. The MS drug natalizumab, a humanized monoclonal antibody against α4-β1-integrin, blocks this interaction and thus reduces the movement of immune cells into the CNS. This paper further elaborates on the role of the BCNSB in the pathophysiology and pharmacotherapy of MS.


2021 ◽  
Author(s):  
◽  
Maddie Griffiths

<p><b>The central nervous system was traditionally considered an immune-privileged site, defined as being immunologically inactive. However, recent studies have elucidated that a number of immune cells traffic into and out of the brain in healthy humans to conduct routine immunosurveillance. A unique immunological interface, the choroid plexus, acts as a gatekeeper for the entry of these immune cells during homeostasis. Although the mechanisms are not well described, the choroid plexus also has the capacity to regulate the responses of migrating leukocytes during inflammation.</b></p> <p>Multiple sclerosis is a complex neuroinflammatory disease characterized by demyelination in the CNS. Autoreactive immune cells invade the central nervous system and orchestrate an attack against myelin sheathes, the insulation layer that protects neurons. The disease affects nearly 1 in 1,000 New Zealanders, and currently has no cure. The most successful treatments for multiple sclerosis target the initial stages by inhibiting the entry of these cells into the central nervous system, however these are often associated with severe side and life-threatening effects and cannot prevent the progression of the disease.</p> <p>Heparanase, the ubiquitously expresses heparan sulfate degrading enzyme has been thoroughly implicated in the disease processes of multiple sclerosis, and its animal model, EAE. Autoreactive lymphocytes exploit heparanase activity to degrade the extracellular matrix and destabilize the barriers that maintain the relative immune privileged status of the central nervous system. Exogenous heparan sulfate mimetics have previously been shown to ameliorate symptoms of EAE by interfering with heparanase activity. However, the commercialization and clinical translation of these inhibitors is currently inhibited by the complexity of their synthesis. ‘HS16-35’ is a novel heparan sulfate mimetic developed by the Ferrier Institute, comprised of a dendritic core with four heavily sulfated oligosaccharide arms. The synthesis of this compound is much shorter due to its smaller size; however, it has been shown to act similarly to native heparan sulfate molecules. We proposed that HS16-35 is protective in preventing the migration of autoreactive immune cells across the choroid plexus by inhibiting lymphocyte heparanase.</p> <p>To investigate the efficacy of HS16-35 in vitro, we first established an experimental transwell model of the choroid plexus. This model incorporated core components of the choroid plexus, including fenestrated capillaries, the stromal matrix and epithelial monolayer. We first showed that the model was capable of mimicking homeostatic trafficking across the choroid plexus epithelium, which formed a selective but permeable barrier. Then, we induced T-cell specific inflammatory migration using Concanavalin A or TH1-type cytokines. This migration was found to be interferon-γ dependent and could be mitigated with anti-interferon-γ treatment.</p> <p>Once this model was established, we next investigated whether HS16-35 was effective in inhibiting inflammatory migration across this structure. To adapt HS16-35 to an in vitro dose, we performed cell viability assays. This confirmed that the compound was mildly cytotoxic to epithelial choroid plexus cells but not murine splenocytes. Further experiments found that low-dose HS16-35 did not impact monolayer permeability. Transwell migration assays showed that low-dose HS16-35 was effective in reducing ConA and interferon-γ mediated inflammatory T-cell migration to a level comparable to homeostatic trafficking. Finally, we assessed cytokine profiles of leukocytes and epithelial choroid plexus cells treated with HS16 35 and found that HS16-35 reduced the expression of key cytokines involved in MS pathogenesis.</p> <p>In summary, the work described in this thesis shows how HS16-35 may be protective during EAE by suppressing the inflammatory response of autoreactive T-cells, in addition to regulating the infiltration of immune cells into the CNS through the choroid plexus. In a broader sense, these findings show that HS16 36 may be effective in treating MS by regulating, not inhibiting lymphocyte migration into the CNS, mitigating some of the severe side effects that other migration-inhibitors face.</p>


Sign in / Sign up

Export Citation Format

Share Document