scholarly journals RGD Collagen for Engineering a Contractile Tissue and Cell Therapy after Myocardial Infarct

Author(s):  
Olivier schussler ◽  
pierre-emmanuel falcoz ◽  
Juan-Carlos Chachques ◽  
Marco Alifano ◽  
Yves lecarpentier

Currently, the clinical impact of cell therapy after a myocardial infarction (MI) is limited by low cell engraftment due to significant cell death, including apoptosis, in an infarcted, inflammatory, poor angiogenic environment, low cell retention and secondary migration. Cells interact with their environment through integrin mechanoreceptors that control their survival/apoptosis/differentiation/migration/proliferation. Optimizing these interactions may be a way of improving outcomes. The association of free cells with a 3D-scaffold may be a way to target their integrins. Collagen is the most abundant structural component of the extracellular matrix (ECM) and the best contractility levels are achieved with cellular preparations containing collagen, fibrin, or Matrigel (i.e. tumor extract). In the interactions between cells and ECM, 3 main proteins are recognised: collagen, laminin and RGD (Arg-Gly-Asp) peptide. The RGD plays a key role in heart development, after MI, and on cardiac cells. Cardiomyocytes secrete their own laminin on collagen. The collagen has a non-functional cryptic RGD and is thus suboptimal for interactions with associated cells. The use of a collagen functionalized with RGD may help to improve collagen biofunctionality. It may help in the delivery of paracrine cells, whether or not they are contractile, and in assisting tissue engineering a safe contractile tissue.

Author(s):  
Farhad Khosravi ◽  
Negah Ahmadvand ◽  
Saverio Bellusci ◽  
Heinrich Sauer

The current focus on cardiovascular research reflects society’s concerns regarding the alarming incidence of cardiac-related diseases and mortality in the industrialized world and, notably, an urgent need to combat them by more efficient therapies. To pursue these therapeutic approaches, a comprehensive understanding of the mechanism of action for multifunctional fibroblast growth factor (FGF) signaling in the biology of the heart is a matter of high importance. The roles of FGFs in heart development range from outflow tract formation to the proliferation of cardiomyocytes and the formation of heart chambers. In the context of cardiac regeneration, FGFs 1, 2, 9, 16, 19, and 21 mediate adaptive responses including restoration of cardiac contracting rate after myocardial infarction and reduction of myocardial infarct size. However, cardiac complications in human diseases are correlated with pathogenic effects of FGF ligands and/or FGF signaling impairment. FGFs 2 and 23 are involved in maladaptive responses such as cardiac hypertrophic, fibrotic responses and heart failure. Among FGFs with known causative (FGFs 2, 21, and 23) or protective (FGFs 2, 15/19, 16, and 21) roles in cardiac diseases, FGFs 15/19, 21, and 23 display diagnostic potential. The effective role of FGFs on the induction of progenitor stem cells to cardiac cells during development has been employed to boost the limited capacity of postnatal cardiac repair. To renew or replenish damaged cardiomyocytes, FGFs 1, 2, 10, and 16 were tested in (induced-) pluripotent stem cell-based approaches and for stimulation of cell cycle re-entry in adult cardiomyocytes. This review will shed light on the wide range of beneficiary and detrimental actions mediated by FGF ligands and their receptors in the heart, which may open new therapeutic avenues for ameliorating cardiac complications.


2021 ◽  
Vol 22 (22) ◽  
pp. 12563
Author(s):  
Olivier Schussler ◽  
Pierre E. Falcoz ◽  
Juan C. Chachques ◽  
Marco Alifano ◽  
Yves Lecarpentier

Currently, the clinical impact of cell therapy after a myocardial infarction (MI) is limited by low cell engraftment due to low cell retention, cell death in inflammatory and poor angiogenic infarcted areas, secondary migration. Cells interact with their microenvironment through integrin mechanoreceptors that control their survival/apoptosis/differentiation/migration and proliferation. The association of cells with a three-dimensional material may be a way to improve interactions with their integrins, and thus outcomes, especially if preparations are epicardially applied. In this review, we will focus on the rationale for using collagen as a polymer backbone for tissue engineering of a contractile tissue. Contractilities are reported for natural but not synthetic polymers and for naturals only for: collagen/gelatin/decellularized-tissue/fibrin/Matrigel™ and for different material states: hydrogels/gels/solids. To achieve a thick/long-term contractile tissue and for cell transfer, solid porous compliant scaffolds are superior to hydrogels or gels. Classical methods to produce solid scaffolds: electrospinning/freeze-drying/3D-printing/solvent-casting and methods to reinforce and/or maintain scaffold properties by reticulations are reported. We also highlight the possibility of improving integrin interaction between cells and their associated collagen by its functionalizing with the RGD-peptide. Using a contractile patch that can be applied epicardially may be a way of improving ventricular remodeling and limiting secondary cell migration.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Avolio ◽  
G Mangialardi ◽  
S Slater ◽  
V.V Alvino ◽  
K Heesom ◽  
...  

Abstract Background Pericytes are attracting much attention as potential candidates for successful cell therapy of myocardial ischaemia. Intramyocardially delivered adventitial pericytes (APCs) secrete paracrine factors which stimulate angiogenesis and recruitment of cardiac stromal cells, reduce fibrosis and promote cardiomyocyte proliferation and viability. However, factors responsible for these biological effects have not been elucidated yet. Purpose To exploit the components of APC secretome exerting a biological effect on cardiac cells with the aim to discover new druggable targets with potential therapeutic activity. Methods and results APCs were derived from saphenous veins of adult patients (n=13, 68±11 yrs, all with coronary artery disease - CAD). The APC-conditioned medium (CM) stimulated the proliferation of human iPS-derived cardiomyocytes compared with unconditioned medium (UCM) (EdU incorporation, 1.3-fold increases, P=0.004). Stimulation with APC-CM increased the number of mitotic figures in cardiomyocytes (Aurora B, 1.5-fold increases compared to UCM, P=0.002). Furthermore, APC-CM abrogated the hypoxia-induced apoptosis in cardiomyocytes (2-fold increase in Caspase 3/7 activity in hypoxic cells exposed to UCM compared to normoxic cells, P=0.002). We also found that APC-CM stimulates the migration of human cardiac stromal cells (CSCs) obtained from healthy donors (n=6, 54±11 yrs) in both a transwell and scratch migration assays (n=6, P<0.01 and P<0.05 vs UCM respectively). Interestingly, APC-CM activated also the migration of HUVECs (n=6, P<0.01 vs UCM) but did not attract fibroblasts. Next, we aimed to identify the biologically active components of the APC-CM. Depletion of exosomes and heat and RNase treatments did not abolish the pro-migratory action of the APC-CM, while this was abrogated by Proteinase K. Fractionation of the APC-CM based on the MW indicated that the bioactive peptides have MW >30KDa. The pro-migratory fractions of the APC-CM obtained from size exclusion chromatography underwent mass spectrometry analysis (n=3 APCs). This identified 14 proteins uniquely present in the pro-migratory fractions. The two most relevant candidates were SPARC and TGFBI, both confirmed by ELISA. Intriguingly, the recombinant SPARC and TGFBI failed to reproduce the biological effect of APC-CM on CSC migration, suggesting that the secreted proteins may carry unique post-translational modifications not found in synthetic peptides. Further analyses are being carried out to reveal the biological properties of the endogenous SPARC and TGFBI. Conclusions This study suggests a fascinating approach based on the use of the active component of the APC-CM as a surrogate of APC therapy. If the biological properties of the cellular proteins will be successfully reproduced in synthetic peptides in vitro, this innovative approach may extend the benefits of APC therapy to all those patients with CAD for whom cell therapy is not an available option. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): British Heart Foundation programme grant “Unravelling mechanism of stem cell depletion for the preservation of regenerative fitness in patients with diabetes”


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Jong-Ho Kim ◽  
Hyung Joon Joo ◽  
Ha-Rim Seo ◽  
Long-Hui Cui ◽  
Mi-Na Kim ◽  
...  

Background: Cell sheet technology has magnified as an important transplantation skill. Mouse adipose derived stem cells (mADSCs) can secrete various growth factors, which promote the repair of damaged cardiomyocyte and protecting cells from death. In addition, autologous cell source to easily obtain from patients are promising candidates for cell therapy in cardiovascular field. Methods: mADSCs were confirmed stem cell properties and secreted cytokines were evaluated in vitro. Eighteen acute myocardial infarction (AMI) rats were divide into 3 group; sham (n=6), suspended mADSCs (n=6), and mADSCs sheet (n=6) groups. In the mADSCs sheet group, 60х106 cells were cultured for 2 days onto temperature-responsive polymers and the sheets were then transplanted over the infarct region. In additional, the sheet was made of carboxyfluorescein diacetate succinimidyl ester (CFDA) -labelled mADSCs to confirmed cell survival. Engraftment and differentiation were blindly assessed after 28 days. Results: The mADSCs expressed Sca-1+ and represented multi-differentiation potential. Interestingly, EGF and IGF levels significantly increased in the mADSCs sheet. Significant improvements in ejection fraction and fraction shortening value were observed in the mADSCs sheet and suspended mADSCs groups compared with the sham group at 14 and 28 days. But, it was not higher significance level in the mADSCs sheet group than in the suspended mADSCs group. Engraftment range and fibrosis area of infarct region were significantly higher in the mADSCs sheet group compared to the other two groups at 4, 14 and 28 days. In significant expressed cytokines (bFGF, IL-1a, IL-1ra, CT-1, EGF, TGFb1, IGF-1, IGF-2 and MCP-1) were observed in the mADSCs sheet group compared with the other 2 groups at 28 days after transplantation. In addition, in the mADSCs sheet was confirmed endothelial differentiation by Von Willebrand factor (vWF) at 4, 14 and 28 days. Conclusions: Transplantation of mADSCs sheet into rat infarcted myocardium increased engraftment and survival of transplanted cells. The mADSCs sheet is very useful for the study of stem cell proliferation and differentiation as well as for cell therapy in cardiovascular field.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Konstantina Ioanna Sereti ◽  
Paniz Kamran Rashani ◽  
Peng Zhao ◽  
Reza Ardehali

It has been proposed that cardiac development in lower vertebrates is driven by the proliferation of cardiomyocytes. Similarly, cycling myocytes have been suggested to direct cardiac regeneration in neonatal mice after injury. Although, the role of cardiomyocyte proliferation in cardiac tissue generation during development has been well documented, the extent of this contribution as well as the role of other cell types, such as progenitor cells, still remains controversial. Here we used a novel stochastic four-color Cre-dependent reporter system (Rainbow) that allows labeling at a single cell level and retrospective analysis of the progeny. Cardiac progenitors expressing Mesp1 or Nkx2.5 were shown to be a source of cardiomyocytes during embryonic development while the onset of αMHC expression marked the developmental stage where the capacity of cardiac cells to proliferate diminishes significantly. Through direct clonal analysis we provide strong evidence supporting that cardiac progenitors, as opposed to mature cardiomyocytes, are the main source of cardiomyocytes during cardiac development. Moreover, we have identified quadri-, tri-, bi, and uni-potent progenitors that at a single cell level can generate cardiomyocytes, fibroblasts, endothelial and smooth muscle cells. Although existing cardiomyocytes undergo limited proliferation, our data indicates that it is mainly the progenitors that contribute to heart development. Furthermore, we show that the limited proliferation capacity of cardiomyocytes observed during normal development was enhanced following neonatal cardiac injury allowing almost complete regeneration of the scared tissue. However, this ability was largely absent in adult injured hearts. Detailed characterization of dividing cardiomyocytes and proliferating progenitors would greatly benefit the development of novel therapeutic options for cardiovascular diseases.


Development ◽  
2000 ◽  
Vol 127 (22) ◽  
pp. 4959-4969 ◽  
Author(s):  
E.J. Ward ◽  
J.B. Skeath

The Drosophila heart is a simple organ composed of two major cell types: cardioblasts, which form the simple contractile tube of the heart, and pericardial cells, which flank the cardioblasts. A complete understanding of Drosophila heart development requires the identification of all cell types that comprise the heart and the elucidation of the cellular and genetic mechanisms that regulate the development of these cells. Here, we report the identification of a new population of heart cells: the Odd skipped-positive pericardial cells (Odd-pericardial cells). We have used descriptive, lineage tracing and genetic assays to clarify the cellular and genetic mechanisms that control the development of Odd-pericardial cells. Odd skipped marks a population of four pericardial cells per hemisegment that are distinct from previously identified heart cells. We demonstrate that within a hemisegment, Odd-pericardial cells develop from three heart progenitors and that these heart progenitors arise in multiple anteroposterior locations within the dorsal mesoderm. Two of these progenitors divide asymmetrically such that each produces a two-cell mixed-lineage clone of one Odd-pericardial cell and one cardioblast. The third progenitor divides symmetrically to produce two Odd-pericardial cells. All remaining cardioblasts in a hemisegment arise from two cardioblast progenitors each of which produces two cardioblasts. Furthermore, we demonstrate that numb and sanpodo mediate the asymmetric divisions of the two mixed-lineage heart progenitors noted above.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
H J Cho ◽  
C S Lee ◽  
J W Lee ◽  
H M Yang ◽  
H S Kim

Abstract Background Specific surface markers that enable monitoring of cell subsets would be valuable for establishing the conditions under which pluripotent stem cells (PSCs) differentiate into cardiac progenitor cells (CPCs) and cardiomyocytes (CMCs). Methods and results To verify whether a specific marker is expressed during heart development, we assessed its expression using the CLARITY technique. After immersion in a solution with a refractive index matching that of the CLARITY hybrid, the mouse embryo became transparent. After immunostaining the cleared embryo sample, Adgrl2 was exclusively observed in cardiac cells expressing α-SA at embryonic day E9.5 and E10.5. Our clarified 3D images and movies show that four chambers of the heart are fully developed at E10.5 but not at E9.5. At E9.5, Adgrl2 is observed at the ventricle and atrium, while Adgrl2 is present in all chambers of the heart at E10.5. Next, we performed LacZ (β-Gal) staining in heterozygous Adgrl2 KO embryos to evaluate Adgrl2 expression. As a result, LacZ staining showed that Adgrl2 was predominantly expressed in the heart during the embryonic developmental stage. Adgrl2 knockout in mice was embryonically lethal because of severe heart, but not vascular, defects. To examine the use of Adgrl2 as a bona fide CPC marker during heart development, we tracked Adgrl2 expression during early embryonic development. The heart of Adgrl2−/− embryos at E10.5 exhibited occlusion of the RV, and the expression levels of Gata4 and Nkx2.5 were not as high as those in wild-type and Adgrl2+/− embryos. Interestingly, the heart of Adgrl2−/− embryos, unlike those of wild-type and Adgrl2+/− embryos between E13.5 and E15.5 had a single ventricle revealing a ventricular septal defect. The specific expression pattern of Adgrl2 in PSC-derived cardiac lineage cells as well as in embryonic heart, adult mice, and human heart tissues. Conclusion We demonstrate that Adgrl2 plays a pivotal and functional role across all strata of the cardiomyogenic lineage, as early as the precursor stage of heart development. These findings shed light on heart development and regeneration. Acknowledgement/Funding Grants from “Strategic Center of Cell and Bio Therapy” (grant number: HI17C2085) and “Korea Research-Driven Hospital” (HI14C1277)


Sign in / Sign up

Export Citation Format

Share Document