scholarly journals The Effect of Lockdown Period During Covid-19 Pandemic on Air Quality in Sydney Region, Australia

Author(s):  
Hiep Duc ◽  
David Salter ◽  
Merched Azzi ◽  
Ningbo Jiang ◽  
Loredana Warren ◽  
...  

In early 2020 from April to early June, the metropolitan area of Sydney as well as the rest of New South Wales (NSW, Australia) experienced a period of lockdown to prevent the spread of Covid-19 virus in the community. The effect of reducing anthropogenic activities including transportation had an impact on the urban environment in term of air quality which is shown to have improved for a number of pollutants, such as nitrogen dioxides (NO2) and carbon monoxide (CO), based on monitoring data on ground and from satellite. Besides primary pollutants CO and NOx emitted from mobile sources, PM2.5 (primary and secondary) and secondary ozone (O3) during the lockdown period will also be analysed using both air quality data and modelling method. The results show that NO2, CO and PM2.5 levels decreased during the lockdown, but O3 instead increased. The change in the concentration levels however are small considering the large reduction in traffic volume of ~30%. By estimate the decrease in traffic volume in Sydney region, the corresponding decrease in emission input to the WRF-CMAQ (Weather Research and Forecasting - Community Multiscale Air Quality Modeling System) air quality model is then used to estimate the effect of lockdown on the air quality especially CO, NO2, O3 and PM2.5 in the Greater Metropolitan Region (GMR) of Sydney. COVID-19 lockdown period is an ideal case to study the effect of motor vehicle and mobile source contribution to air pollutants such as those listed above in the GMR.

Author(s):  
Hiep Duc ◽  
David Salter ◽  
Merched Azzi ◽  
Ningbo Jiang ◽  
Loredana Warren ◽  
...  

In early 2020 from April to early June, the metropolitan area of Sydney as well as the rest of New South Wales (NSW, Australia) experienced a period of lockdown to prevent the spread of COVID-19 virus in the community. The effect of reducing anthropogenic activities including transportation had an impact on the urban environment in terms of air quality which is shown to have improved for a number of pollutants, such as Nitrogen Dioxides (NO2) and Carbon Monoxide (CO), based on monitoring data on the ground and from a satellite. In addition to primary pollutants CO and NOx emitted from mobile sources, PM2.5 (primary and secondary) and secondary Ozone (O3) during the lockdown period will also be analyzed using both statistical methods on air quality data and the modelling method with emission and meteorological data input to an air quality model. By estimating the decrease in traffic volume in the Sydney region, the corresponding decrease in emission input to the Weather Research and Forecasting—Community Multiscale Air Quality Modelling System (WRF-CMAQ) air quality model is then used to estimate the effect of lockdown on the air quality especially CO, NO2, O3, and PM2.5 in the Greater Metropolitan Region (GMR) of Sydney. The results from both statistical and modelling methods show that NO2, CO, and PM2.5 levels decreased during the lockdown, but O3 instead increased. However, the change in the concentration levels are small considering the large reduction of ~30% in traffic volume.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 486 ◽  
Author(s):  
Lisa Chang ◽  
Hiep Duc ◽  
Yvonne Scorgie ◽  
Toan Trieu ◽  
Khalia Monk ◽  
...  

A comprehensive evaluation of the performance of the coupled Conformal Cubic Atmospheric Model (CCAM) and Chemical Transport Model (CTM) (CCAM-CTM) for the New South Wales Greater Metropolitan Region (NSW GMR) was conducted based on modelling results for two periods coinciding with measurement campaigns undertaken during the Sydney Particle Study (SPS), namely the summer in 2011 (SPS1) and the autumn in 2012 (SPS2). The model performance was evaluated for fine particulate matter (PM2.5), ozone (O3) and nitrogen dioxide (NO2) against air quality data from the NSW Government’s air quality monitoring network, and PM2.5 components were compared with speciated PM measurements from the Sydney Particle Study’s Westmead sampling site. The model tends to overpredict PM2.5 with normalised mean bias (NMB) less than 20%, however, moderate underpredictions of the daily peak are found on high PM2.5 days. The PM2.5 predictions at all sites comply with performance criteria for mean fractional bias (MFB) of ±60%, but only PM2.5 predictions at Earlwood further comply with the performance goal for MFB of ±30% during both periods. The model generally captures the diurnal variations in ozone with a slight underestimation. The model also tends to underpredict daily maximum hourly ozone. Ozone predictions across regions in SPS1, as well as in Sydney East, Sydney Northwest and Illawarra regions in SPS2 comply with the benchmark of MFB of ±15%, however, none of the regions comply with the benchmark for mean fractional error (MFE) of 35%. The model reproduces the diurnal variations and magnitudes of NO2 well, with a slightly underestimating tendency across the regions. The MFE and normalised mean error (NME) for NO2 predictions fall well within the ranges inferred from other studies. Model results are within a factor of two of measured averages for sulphate, nitrate, sodium and organic matter, with elemental carbon, chloride, magnesium and ammonium being underpredicted. The overall performance of CCAM-CTM modelling system for the NSW GMR is comparable to similar model predictions by other regional airshed models documented in the literature. The performance of the modelling system is found to be variable according to benchmark criteria and depend on the location of the sites, as well as the time of the year. The benchmarking of CCAM-CTM modelling system supports the application of this model for air quality impact assessment and policy scenario modelling to inform air quality management in NSW.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1319 ◽  
Author(s):  
Andrea Piccoli ◽  
Valentina Agresti ◽  
Alessandra Balzarini ◽  
Marco Bedogni ◽  
Riccardo Bonanno ◽  
...  

Recent observation and modeling-based studies have shown how air quality has been positively affected by the containment measures enforced due to the COVID-19 outbreak. This work aims to analyze Lombardy’s NO2 atmospheric concentration during the spring lockdown. The region of Lombardy is known for having the largest number of residents in Italy and high levels of pollution. It is also the region where the first European confinement measures were imposed by the Italian government. The modeling suite composed of CAMx (Comprehensive Air Quality Model with Extensions) and WRF (Weather Research and Forecasting model) provides the setting to compare the atmospheric NO2 concentration from mid-February to the end of March with a business as usual situation. The main interest in this work is to investigate the response of NO2 atmospheric concentration to increasingly reduced road traffic. We can simulate, for the first time, a real circumstance of progressively reduced mobility, as well as validating it with measured air quality data. Focusing on the city of Milan, we found that the decrease in NO2 concentration reflects progressively reduced traffic contraction. In the case of a large traffic abatement (71%), the concentration level is reduced by one third. We also find that industrial activities have a relevant impact on NO2 atmospheric concentration, especially in the provinces of Brescia and Bergamo. This study provides an overview of how incisive policies must be implemented to achieve the set environmental targets and protect human health.


2005 ◽  
Vol 2005 (3) ◽  
pp. 1393-1414
Author(s):  
Kuo-Liang Lai ◽  
Janet Kremer ◽  
Susan Sciarratta ◽  
R. Dwight Atkinson ◽  
Tom Myers

2021 ◽  
Vol 13 (10) ◽  
pp. 5685
Author(s):  
Panbo Guan ◽  
Hanyu Zhang ◽  
Zhida Zhang ◽  
Haoyuan Chen ◽  
Weichao Bai ◽  
...  

Under the Air Pollution Prevention and Control Action Plan (APPCAP) implemented, China has witnessed an air quality change during the past five years, yet the main influence factors remain relatively unexplored. Taking the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions as typical cluster cities, the Weather Research Forecasting (WRF) and Comprehensive Air Quality Model with Extension (CAMx) were introduced to demonstrate the meteorological and emission contribution and PM2.5 flux distribution. The results showed that the PM2.5 concentration in BTH and YRD significantly declined with a descend ratio of −39.6% and −28.1%, respectively. For the meteorological contribution, those regions had a similar tendency with unfavorable conditions in 2013–2015 (contribution concentration 1.6–3.8 μg/m3 and 1.1–3.6 μg/m3) and favorable in 2016 (contribution concentration −1.5 μg/m3 and −0.2 μg/m3). Further, the absolute value of the net flux’s intensity was positively correlated with the degree of the favorable/unfavorable weather conditions. When it came to emission intensity, the total net inflow flux increased, and the outflow flux decreased significantly across the border with the emission increasing. In short: the aforementioned results confirmed the effectiveness of the regional joint emission control and provided scientific support for the proposed effective joint control measures.


1993 ◽  
Vol 134 (1-3) ◽  
pp. 1-7 ◽  
Author(s):  
Ana Isabel A. Miranda ◽  
Miguel S. Conceição ◽  
Carlos S. Borrego

2017 ◽  
Author(s):  
Jianlin Hu ◽  
Xun Li ◽  
Lin Huang ◽  
Qi Ying ◽  
Qiang Zhang ◽  
...  

Abstract. Accurate exposure estimates are required for health effects analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used tools to provide detailed information of spatial distribution, chemical composition, particle size fractions, and source origins of pollutants. The accuracy of CTMs' predictions in China is largely affected by the uncertainties of public available emission inventories. The Community Multi-scale Air Quality model (CMAQ) with meteorological inputs from the Weather Research and Forecasting model (WRF) were used in this study to simulate air quality in China in 2013. Four sets of simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 with the four inventories generally meet the criteria of model performance, but difference exists in different pollutants and different regions among the inventories. Ensemble predictions were calculated by linearly combining the results from different inventories under the constraint that sum of the squared errors between the ensemble results and the observations from all the cities was minimized. The ensemble annual concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFE) of the ensemble predicted annual PM2.5 at the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25–−0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual 1-hour peak O3 (O3-1 h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1 h. The study demonstrates that ensemble predictions by combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories and the results are publicly available for future health effects studies.


2010 ◽  
Vol 3 (4) ◽  
pp. 2291-2314
Author(s):  
G. Sarwar ◽  
K. W. Appel ◽  
A. G. Carlton ◽  
R. Mathur ◽  
K. Schere ◽  
...  

Abstract. A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base) and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeastern US, and Detroit compared to that with the base toluene chemistry. It reduces model mean bias for ozone at elevated observed ozone mixing ratios. While the new mechanism increases predicted ozone, it does not enhance ozone production efficiency. Sensitivity study suggests that it can further enhance ozone if elevated toluene emissions are present. While changes in total fine particulate mass are small, predictions of in-cloud SOA increase substantially.


Sign in / Sign up

Export Citation Format

Share Document